English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26999/38800
Visitors : 2398826      Online Users : 69
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/34771

Title: 以原子力顯微鏡之區域陽極氧化技術製作氧化鎳奈米結構的電阻式隨機存取記憶元件
Fabrication of Nickel Oxide Nano-Structures for Resistive Random Access Memory Using Atomic Force Microscopy Local Anodic Oxidation
Authors: Jia-Yuan Shiu
許家源
Contributors: NTOU:Institute of Optoelectronic Sciences
國立臺灣海洋大學:光電科學研究所
Keywords: 原子力顯微鏡;區域陽極氧化;電阻式隨機存取記憶體;氧化鎳;奈米點;二次離子質譜儀
Atomic force microscope;Local anode oxidation;Resistive random access memory;nickel oxide;nano-dot;Secondary ion mass spectroscopy
Date: 2013
Issue Date: 2013-10-07T02:46:17Z
Abstract: 本論文敘述利用原子力顯微鏡的區域陽極氧化法從鎳薄膜製作了氧化鎳奈米點,並運用於快速測試電阻式記憶元件。在眾多記憶元件中,以金屬氧化物為主的電阻式記憶體受到廣泛的研究,進而有機會成為新一代記憶元件。利用金屬氧化物奈米點構裝成電阻式記憶元件可減少操作電壓、增加抹除寫入速度與電子保存時間。我們的實驗藉著操控原子力顯微鏡而進行區域陽極氧化來製作各種金屬氧化物,這樣的過程可以快速合成由金屬氧化物並構成電阻式記憶體。最佳的製程可以編製作出直徑50 nm的氧化鎳奈米點。實驗流程以黃光顯影技術在玻璃基板上定義出金屬薄膜區域做為電極,接著使用熱蒸鍍鍍上厚度為20 nm的鎳薄膜,再運用原子力顯微鏡在室溫下進行鎳金屬的氧化,而產生的金屬氧化物做為電阻式記憶體的絕緣層,因而便完成電阻式記憶元件的主動材料,我們可以經由陽極施加的偏壓與原子力顯微鏡探針的下壓力量來控制金屬氧化物奈米點的尺寸。利用了二次質譜儀來進行此主動材料之氧化鎳成份分析,結果顯示使用區域陽極氧化所製備之氧化鎳,其氧原子對鎳原子比值大於一,由此分析結果我們認為其電阻轉換機制為鎳空缺路徑的形成與斷裂。在電阻式記憶元件測試方面,我們創新的橫向式與垂直式電阻式記憶體皆可以觀察到電阻轉換的現象,而由電阻轉換測試結果,橫向式結構優於垂直式結構,是故成功發展在低溫下新穎的氧化鎳記憶元件之製程技術。
We have demonstrated a fabrication process for producing nickel oxide nano-dots by atomic force miscopy (AFM) local anodic oxidation via nickel thin films for rapid evaluation of resistive random access memory (RRAM) cell. In various memory devices in nanometer scale, the structures of RRAM device with metal oxide nano-dots were widely researched. It classify as a new candidate for RRAMs. Such metal oxide nano-dots structures reduce operate voltage with increase write/erase speed and enhance endurance. Our experiment operates atomic force microscope to produce a various of metal oxides by local anodic oxidation. Such process shows the ability of rapid synthesis of metal oxide resistive random access memory. The optimum process produces nickel oxide nano-dots with diameter of 50 nm. Firstly, we used photolithography technology to pattern electrodes via the metal thin film on glass substrate. Follow by thermal evaporation, the nickel thin film of 20 nm in thickness was deposited. We then manipulated the atomic force microscopy to oxide nickel part in the room temperature. The metal oxide acts as an insulating layer in RRAM which complete the active material of such resistive memory cell. We are able to control the metal oxide nano-dots size via anodic voltages and AFM tip down-forces in room temperature. From the analysis of this active material, secondary ion mass spectroscopy (SIMS) was utilized to determine the composition of the nickel oxide. The oxygen/Ni atomic ratio of as-process oxide is larger than one. From the SIMS result, the resistive switching mechanism is proposed to the formation of conducting paths and fracture of paths which were composed by nickel vacancies. In RRAM devices, resistive switching phenomenon was measured in a lateral and a vertical structure of our innovate RRAM. However, the test result shows our lateral structure samples in resistive switching is greater than that of the vertical samples. The characteristics of our AFM local oxidation nickel oxide resistive memory cell shows the successfully development a novel process for producing RRAM in low temperature with practical manufacturing procedure.
URI: http://ethesys.lib.ntou.edu.tw/cdrfb3/record/#G0010088014
http://ntour.ntou.edu.tw/handle/987654321/34771
Appears in Collections:[光電科學研究所] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML146View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback