English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26994/38795
Visitors : 2388073      Online Users : 28
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/34694

Title: 以二氧化碳雷射對鋅片與黃銅片加熱合成氧化鋅奈米結構
Synthesis of Zinc Oxide Nanostructures by Direct CO2 Laser Heating on Zinc and Brass Foils
Authors: Tzu-Wei Tseng
曾梓維
Contributors: NTOU:Institute of Optoelectronic Sciences
國立臺灣海洋大學:光電科學研究所
Keywords: Zinc Oxide;CO2 Laser;water splitting
氧化鋅;二氧化碳雷射;水分解
Date: 2012
Issue Date: 2013-10-07T02:45:29Z
Abstract: 本實驗在室溫環境下以二氧化碳雷射直接加熱鋅與黃銅金屬片合成氧化鋅奈米結構,鋅金屬片合成氧化鋅奈米結構的生長速率可達6.57 m/s,而黃銅金屬片合成氧化鋅奈米結構的生長速率可達5.56 m/s。氧化鋅的奈米結構的分析,是利用場發射掃描電子顯微鏡、高解析穿透式電子顯微鏡、能量散佈分析儀、X光繞射儀、共焦拉曼顯微儀及室溫光激螢光頻譜量測,以作為材料特性的探討並將其應用在水分解實驗。 在氧化鋅的形貌方面,我們藉由場發射掃描電子顯微鏡觀察。鋅金屬片有針狀和棒狀的氧化鋅奈米結構,黃銅金屬片有針狀、棒狀及片狀的氧化鋅奈米結構。另外用高解析穿透式電子顯微鏡來觀察片狀的氧化鋅的晶格,並且算出片狀氧化鋅的間距約是0.278 nm和0.158 nm,對應(100)及(110)晶面。在結構分析上,用二氧化碳雷射合成的氧化鋅奈米結構屬於六角纖鋅礦結構。 在室溫光激螢光頻譜量測下,有兩個明顯激發光峰值,分別是紫外光和藍綠光波段,紫外光激發波峰是由於寬能隙氧化鋅近帶邊緣轉換導致(Near band-edge transition, NBE),而藍綠光激發波峰,是材料缺陷所造成的。氧化鋅奈米結構物的震動特性是由共焦拉曼顯微儀所量測,其中以437 cm-1的震動強度最強,符合六角纖鋅礦相的震動帶的特徵。 水分解量測是採二極式和三極式量測,鋅片的二極式和三極式量測的光電流密度分別為6.6 A/cm2和0.14 mA/cm2,氧化鋅基板的二極式和三極式量測的光電流密度分別為0.5 mA/cm2和0.47 mA/cm2。本實驗室目前以氧化鋅基板生長之氧化鋅奈米線用做水分解,其效率可達0.52 %(二極式量測)、對於光電能源的轉換未來有很大的潛力。
Our laboratory synthesis of ZnO nanostructures by direct CO2 laser heating on zinc and brass foils at room temperature. The growth rates of synthesizing ZnO nanostructures on zinc foil reaches 6.57m/s, while the growth rates of synthesizing ZnO nanostructures on brass foil reaches 5.56m/s. Analysis of ZnO nanostructures was used field-emission scanning electron microscope, high-resolution transmission electron microscope, energy dispersive analyzer, X-ray diffraction, confocal Raman microscopy instrument and room temperature photoluminescence measurement. We further study properties of materials and apply in the water splitting. We observed morphology of ZnO by field-emission scanning electron microscopy. It has needle and rod-like ZnO nanostructures on the zinc foil, and there are needle, rod and sheet-like ZnO nanostructures on the brass foil. In addition, using high-resolution transmission electron microscope to observe the lattice of ZnO sheet, and calculate the spacing of ZnO is about 0.278 nm and 0.158 nm,corresponding to (100) and (110) plane. Structural analysis showed that synthesis of ZnO nanostructures by CO2 laser belonged to the hexagonal structure. At the room temperature photoluminescence spectra measurement, there are two distinct excitation peak in ultra-violet(UV)band and blue-green band. The UV emission band was attributed to near band-edge transition and blue-green emission band was caused by defect in material. The vibration on characteristics of ZnO nanostructures was measured by confocal Raman microscopy instrument, which the 437 cm-1 vibration was the strongest intensity with features of the hexagonal phase. Water splitting measurement was used two electrode and three electrode measurement. The photocurrent density of two electrode and three electrode were 6.6 A/cm2 and 0.14 mA/cm2 on the zinc foil, respectively. While the photocurrent density of two electrode and three electrode were 0.5mA/cm2 and 0.47mA/cm2 on the ZnO substrate, respectively. Our laboratory have grown ZnO nanowires by ZnO substrate and the water splitting efficiency of the ZnO substrate reached 0.52 % under two electrode measurement. There will be great potential for photovoltaic emergy conversion in the feature.
URI: http://ethesys.lib.ntou.edu.tw/cdrfb3/record/#G0019988015
http://ntour.ntou.edu.tw/handle/987654321/34694
Appears in Collections:[光電科學研究所] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML163View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback