English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2352364      Online Users : 35
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/34489

Title: 以微數位投影與光介電泳技術固定單一細胞於微懸臂樑及其細胞力學之研究
Study of Cell Mechanics of Single Cell Adhered on a Microcantilever by Digital Micromirror Devices and Optically-Induced Dielectrophoresis Techniques
Authors: 吳志偉
Contributors: NTOU:Department of Mechanical and Mechatronic Engineering
國立臺灣海洋大學:機械與機電工程學系
Keywords: 微懸臂樑;npn 光電晶體;光介電泳力;細胞力學;微型反射鏡元件
microcantilever;npn phototransistor;optically-induced dielectrophoretic force;cell mechanic;digital micromirror device
Date: 2012
Issue Date: 2013-10-07T02:33:38Z
Publisher: 行政院國家科學委員會
Abstract: 本研究擬以兩年的時間完成『以微數位投影與光介電泳技術固定單細胞於懸臂樑及 其細胞力學研究』研究計畫,利用懸臂樑變形行為進行細胞附著力長期量測,進而建立 細胞力學與病毒感染複製力學等模式。首先須將細胞引導固定於懸樑前端以提高靈敏 度,然目前技術常有細胞傷害、力量過小、與細胞需修飾等缺點。而於懸樑上以金屬電 極產生介電泳力的方式卻有電極剝落與形狀固定、水解、靈敏度降低、熱應力、懸臂樑 面積不足等問題。近來雖有利用光介電泳力操控細胞,但以非晶矽作為光導材料也因製 程複雜、需低電解液導電度、與操控力小等原因而無法滿足本研究要求。本研究提出以 npn 光電晶體的概念製作微懸臂樑,此製程完全相容於現金半導體製程,且光導電性比 非晶矽材料高出約500 倍,極適用於小面積微懸臂樑使用。另以微投影方式製作光電極, 可即時改變電極圖案進而調整光介電泳力的大小與方向,達到全方位操控細胞之目的。 本細胞力學量測系統包含影像擷取與處理系統、含npn 型微懸臂樑之細胞力學量測 晶片、細胞操控系統、與位移測量系統等。只需將細胞置於針筒內並由幫浦注入晶片, 經由影像處理方式進行自動化單細胞選取,並將細胞座標值輸入細胞操控系統內,以光 介電泳方式將細胞引導至懸臂樑固定區附著,再利用光槓桿原理持續長時間量測因細胞 作用力不同所造成之懸樑形變量,進而建構細胞力學模式,可作為細胞老化或健康判斷 之依據;若繼續通入病毒或藥物,更可完成病毒感染複製力學模式,進而提供產業界作 為藥物或保健食品快速篩選之依據。計畫第一年之工作重點為進行介電泳電場模擬以確 認最佳實驗條件、建立單細胞選取之影像擷取與處理系統、與完成npn 型微懸臂樑之設 計與製作。計畫第二年將根據第一年的成果,陸續完成細胞力學量測晶片設計與製作、 以微投影技術製作細胞操控系統、建立細胞力學與病毒感染複製力學等模式。最後並將 結果與傳統方式進行交叉比對,進而驗證系統與力學模式之準確性。 計畫目的為發展新式細胞力學量測技術,突破傳統方法所無法克服的障礙,本計畫 所提出之『npn 型微懸臂樑』、『光介電泳操控固定細胞於微懸臂樑』、『細胞垂直作用力 量測方法』、『病毒感染複製力學模式』等,皆極具學術發表與專利申請之價值。另就醫 療器材或醫藥產業而言,2010 年台灣已有各類藥廠529 家,產值達到新台幣650 億元, 而本系統可長時間記錄細胞附著於基材之作用力,此力受細胞增生、死亡、遷移、或健 康狀態影響甚大,甚至細胞受到病毒或細菌感染亦將造成細胞作用力之改變,故本技術 可順利提供藥廠進行新藥開發使用,進而縮短新藥開發時間與成本,更可開創全新產業。
In this two-year project, digital micromirror devices and optical-induced dielectrophoretic techniques will be using to manipulate and fix single cell on a microcantilever to process long-term of cell mechanic measurements and virus infection mechanic models. The microcantilever area is too small to deposit metal electrodes, which are using to induce dielectrophoretic forces, on it. Meanwhile, metal electrodes have electrode shape unchangeable, low sensitivity, and thermal stress problems if they are deposited on a cantilever. Optical-induced dielectrophoretic forces induced by amorphous silicon material are recently used to manipulate cells which would be insufficient if the cantilever area is too small. The other reasons of this method could not be adopted in this project are the fabrication of amorphous silicon layer is complicated and the electrolyte conductivity must be small. N type and P type silicon layers are used to fabricate a phototransistor-microcantilever, which are completely compatible to CMOS processes. Moreover, the photoconductance of npn phototransistor is over 500 times higher than amorphous silicon. On the other hand, cells can be completely manipulated by optical-induced electrodes formed by digital micromirror devices because electrode shapes and dielectrophoretic forces can be immediately changed. The cell mechanic measurement system consists of an image capturing and processing system, a biochip with a npn-type cantilever for cell mechanic measurement, a cell manipulation system, and a cantilever deflection detection system. All we need to do is injecting the cells into the inlet of the biochip by an injection pump, and the image of single cell will be captured by the image capture system. The coordinate values of the single cell from the captured image will be calculated by Lab VIEW software and then sent to the cell manipulation system to form optical-induced electrodes to induce dielectrophoretic forces to guide and to adhere the single cell to the end of the cantilever. The cantilever deflection induced by cell-laden forces can be recorded continually by the cantilever deflection detection system and then the cell mechanic and virus infection mechanic models can be established. The cell mechanic model can be used to determine cell healthy or ageing conditions or to screen candidate medicines for virus if cells and virus are injected into the biochip simultaneously. The major works in the first year are (1) Simulation of optical-induced dielectrophoretic forces to determine the best experiment conditions; (2) Setup of the single cell image capturing and processing system; (3) Design and fabrication of the npn type microcantilever. The major works in the second year are (1) Design and fabrication of the cell mechanic measurement biochip; (2) Setup of the single cell manipulation system by digital micromirror devices; (3) Construction of the cell mechanic model. Finally, the results will be compared to conventional techniques to verify the accuracy of this model. The main purpose of this project is to construct the cell mechanic and virus infection models to overcome the choke point of the past, and offers the method to reduce the measurement cost. As regards academic research, the topics of『npn-type microcantilever』、 『Cell manipulation and adhesion on a microcantilever by optical-induced dielectrophoretic forces』、『Measurement of cell vertical adhesion force』、『Virus infection mechanic model』 shown in this project all have sufficient novelty to be expanded as papers or patents. Meanwhile, there are 529 medicine factories and the output value of these factories is 65 billion in 2010 Taiwan. The cell mechanic measurement system can continually record cell force variation, which can be used to screen candidate medicines for virus because cell forces are intense influence by cell conditions (propagation, death, health, migration). Therefore, the proposed new concept is expected to be extremely useful in academic research and the industry application.
Relation: NSC101-2221-E019-011
URI: http://ntour.ntou.edu.tw/handle/987654321/34489
Appears in Collections:[機械與機電工程學系] 研究計畫

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback