English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26987/38787
Visitors : 2289649      Online Users : 36
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/34473

Title: LED 微發電均溫板元件之研製(II)
Development for Micro-Generator with LED Vapor Chamber-Based Plate(II)
Authors: 王榮昌
Contributors: NTOU:Department of Marine Engineering
國立臺灣海洋大學:輪機工程學系
Keywords: 發光二極體;微均溫板;發電晶片;微發電均溫板;照明燈具;鋰離子電 池
Light Emitting Diode;Vapor Chamber;Thermoelectric Generating Module;Micro-Generator with LED Vapor Chamber-Based Plate;Light Lamp;Li-ion Battery
Date: 2012
Issue Date: 2013-10-07T02:33:10Z
Publisher: 行政院國家科學委員會
Abstract: 摘要:高功率發光二極體(High-Power Light Emitting Diode, High-Power LED)具有重量輕、 體積小且耐抗震等節能環保綠色照明的優點,目前利用高功率LED 所組成的照明燈 具,熱管理為其需要再深入探討研究的重要關鍵。而且台灣目前為全世界LED 的主 要生產國家,產值高達第二名;如果要持續保持這樣的優勢,比其他國家更領先進 一步開發新的高功率LED 綠色能源照明技術-LED 微發電均溫板(Micro-Generator with LED Vapor Chamber-Based Plate, LED-MGVC)元件是非常重要的。其中因為微均 溫板(Vapor Chamber, VC)具有高熱傳效率、重量輕及抗重力等特性,可取代目前五種 LED 基板(PCB、MCPCB、IMS、CS、DCBS),成為新一代的高功率LED 微均溫基 板(LED-VCPCB)。但在LED 的熱管理中,高功率LED 照明約有八成的電輸入功率 將以廢熱的形式產生,若可藉由發電晶片(Thermoelectric Generating Module,TGM)之 溫差生電的特性,將LED 所產生的多餘熱能從鋰離子電池(Li-ion Battery)中儲存/釋 放,轉換成可利用之電能,省去電流轉換(Inverter)的損失,即可將電能做更有效率 的運用。並可開發成LED 微發電均溫板(LED-MGVC)元件系統,以達成綠色照明能 源循環再利用之效益。 本計畫「LED 微發電均溫板元件之研製(II)」為延續100 年度「LED 微發電均溫板元 件之研製(NSC100-2221-E-019-064-)」計畫,100 年度計畫的內容為單獨對於銅散熱 基板、鋁散熱基板及均溫板(VC)分別應用於LED 發電晶片(TGM)熱性能特性的實 驗。而為了能夠完整充分探討及製造新綠色能源元件-LED 微發電均溫板 (LED-MGVC)元件系統,本計畫「LED 微發電均溫板元件之研製(II)」將建立於100 年度計畫的基礎上,更進一步地將均溫板(VC)結合發電晶片(TGM)研製成LED 微發 電均溫板(LED-MGVC)元件,故本計畫分為兩年來執行。第一年度計畫研究目的為 利用均溫板(VC)結合發電晶片(TGM)的系統來探討高功率LED 照明的特性,並與 銅、鋁基板結合TGM 之LED 系統作比較,分析不同的散熱基板系統對於LED 照明 所造成之熱流與熱電照明性能優劣,以找出最佳組合之LED 照明系統。進而建立高 功率LED-MGVC 之理論模式及數值模擬分析方法暨實際樣品製作,以作為第二年度 計畫發展目標的基礎。第二年度計畫研究目的之一,為建立發電晶片元件與鋰離子 電池性能測試及數值分析,以與第一年度計畫的結果作結合,並製作LED-MGVC 元件原型。第二年度計劃研究目的之二為發展LED-MGVC 元件暨燈具並實際測試, 以最佳化設計為最後達成目標。因此,了解LED 微發電均溫板(LED-MGVC)元件的 原理並建立理論模式也是學術界幫助台灣LED 照明業界的責任,相信在不久的將 來,一般家庭使用LED 室內照明燈具一定會更普及。本計畫在學術方面上及工程實 際應用上,皆具有相當的研究價值。
Abstract:High-power Light Emitting Diode (High-power LED) is light weight, small size and resistance to seismic and other advantages of energy saving lighting, the use of high-power LED is currently composed of lighting; but thermal management needs to go further into their important research key. LED is currently the world’s major producing country for Taiwan, production value up to second place; if we want to continue to maintain this advantage, more than other countries leading to further development of new LED green-lighting technology-Micro-Generator with LED Vapor Chamber-Based Plate (LED-MGVC) is very important. Vapor Chamber (VC) which has a high heat transfer efficiency, light weight and anti-gravity and other features, can replace the current five kinds of LED board (PCB, MCPCB, IMS, CS, DCBS), a new generation of high power LED vapor chamber-based plate. However, the LED thermal management, high power LED lighting about 80% of electrical input power will be in the form of waste heat generated by thermoelectric generating module (TGM), if available raw power of the temperature characteristics of the heat generated by the LED from a Li-ion battery in the storage / release, can be used to convert the electricity, eliminating the current conversion (Inverter) losses can be more efficient use of electricity can do. And the plan develops a LED-MGVC device, in order to achieve the recycling of green energy efficiency. The project "Development for micro-generator with LED vapor chamber-based plate (II)" for the continuation of 100 years "Development for micro-generator with LED vapor chamber-based plate (NSC100-2221-E-019-064-)" plan, annual program content 100 as a separate Copper, Aluminum and VC and TGM were used for the LED thermal performance experiments. In order to complete the full study and create new green energy components, the LED-MGVC component, the project "Development for micro-generator with LED vapor chamber-based plate (II)" will build on the 100 year plan basis, further development of the VC with TGM into LED-MGVC device, so this project is divided into two years to implement. First year research project aims to combine the use of VC with TGM system to explore the characteristics of high power LED lighting, and with copper, aluminum plate with TGM's LED system for comparison, analysis of different systems for cooling the substrate caused by the heat LED lighting and thermoelectric properties of the pros and cons to find the best combination of LED lighting systems. And establish a high-power LED vapor chamber-based plate of the theoretical model and numerical simulation method cum actual samples produced under the annual plan as the basis for development goals. One of the aims of the second annual plan for the establishment of TGM and lithium-ion battery performance testing and numerical analysis to the results of the first annual plan for the integration and production micro-generator with LED vapor chamber-based plate. The second purpose of the two year plan is to study for the development of LED-MGVC-cum-lamp and practical tests to achieve the best design for the final goal. Therefore, understanding LED-MGVC theory and the establishment of theoretical models of the academic community to help Taiwan LED lighting is the responsibility of the industry, I believe that in the near future, the general home use LED interior lighting will be more popular. The program on the academic and practical engineering applications, are of considerable research value.
Relation: NSC101-2221-E019-042
URI: http://ntour.ntou.edu.tw/handle/987654321/34473
Appears in Collections:[輪機工程學系] 研究計畫

Files in This Item:

File Description SizeFormat
index.html0KbHTML156View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback