English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27314/39158
Visitors : 2471629      Online Users : 161
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/34451

Title: 內藏式永磁同步電動機驅動系統之新型預測電流控制器設計與研製
Design and Implementation of Novel Predictive Current Controllers for Interior Permanent Magnet Synchronous Motor Drive Systems
Authors: 林正凱
Contributors: NTOU:Department of Electrical Engineering
國立臺灣海洋大學:電機工程學系
Keywords: 內藏式永磁同步馬達;電流預測控制;數位訊號處理器;延伸型反電動勢;電流斜率偵測
interior permanent magnet synchronous motor;predictive current control;digital signal processor;extended back-EMF;current slope detection
Date: 2012
Issue Date: 2013-10-07T02:32:35Z
Abstract: 內藏式永磁同步電動機已被廣泛地使用在工業應用中,由於它的結構堅固和高功率 密度所致。近年來,有關內藏式永磁同步電動機的期刊論文已不斷地被發表。為了改善 變頻器的電流追蹤能力,開發新的開關切換演算法將是本計畫研究的主要動機之一。 本計畫的研究目的為實現二種預測電流控制技術於內藏式永磁同步電動機驅動系 統,其中一種是以延伸型反電動勢估測為基礎之模型式預測電流控制技術,另一種是以 電流斜率偵測為基礎之無模型式預測電流控制技術。藉由實作此二種預測電流控制器於 內藏式永磁同步電動機驅動系統以驗證其可行性與正確性。 由於內藏式永磁同步電動機的傳統三相定子電壓方程式中的定子電感彼此互相耦 合,故現有的預測電流控制技術將無法直接推廣到這些方程式中。為了解決這個問題, 本計畫擬於在第一年中(2012/12/1~2013/7/31)採用以延伸型反電動勢為基礎的數學 模型,即等效三相定子電壓方程式來推導預測電流控制的法則,其重要性在於所提出的 方法不需要使用 d-q 軸座標轉換,不需要電動機的速度資訊,僅需使用 q 軸電感參數及 定子電阻參數,並量測電動機的定子電流及定子電壓,便可達到預測電流控制的目的。 在第二年中(2013/8/1~2014/7/31)將開發以電流斜率偵測技術為基礎的預測電流控制,其 重要性在於所提出的方法,僅需電流斜率的資訊,便可達到預測電流控制的目的。由於 目前在內藏式永磁同步電動機驅動系統中所採用的開關切換策略已趨近成熟,然而仍然 有許多改善及進步的空間,故開發新型開關切換策略是刻不容緩的,並為現有的變頻器 開關切換技術提供了另一種選擇方案,可滿足許多工業應用中對開關切換演算法的低運 算量與高效能的需求。 本計畫擬分為一年八個月進行(2012/12/1~2014/7/31),所有的軟體部分將以數位訊 號處理器(DSP)實現,第一年(2012/12/1~2013/7/31)將模型式預測電流控制應用於內藏式 永磁同步驅動系統,以滿足計畫所需之電流追蹤的性能,第二年(2013/8/1~2014/7/31)將 無模型式預測電流控制應用於內藏式永磁同步驅動系統中,並將這兩種方法的實驗結果 進行比較與討論,所得的實驗結果將可能為目前現有的內藏式永磁同步電動機驅動系統 帶來新的開關切換策略。所研發的成果,將有機會進一步技術移轉至工業界,有助於提 升國內馬達驅動的研究水平。
Interior permanent magnet synchronous motor (IPMSM) is widely used in industrial applications due to its rugged structure and high power density. In recent years, research papers related to IPMSM have been published continuously. To improve current tracking performance of the inverter, developing new switching algorithms is the main goal of this project. The objective of this project is to develop two predictive current controllers for IPMSM drive systems. One is the model-based predictive current controller, which is based on an extended back-EMF estimation method, and the other one is the model-free predictive current controller, which is based on a current-slope detection technique. Through implementation of the two predictive current controllers on the IPMSM drive system, their feasibility and usefulness can be verified and demonstrated. Due to the coupling effects of the stator inductances in the classical three-phase stator-voltage equations of the IPMSM, existing model-based predictive current controls cannot be applied to these equations directly without using the d-q synchronous coordinate transformation. To solve this problem, another mathematical model, based on extended back-EMF, will be applied in this project. The equivalent three-phase stator-voltage equations are used to establish the predictive current controls in the first year (2012/12/1~2013/7/31). The importance of the method is that it does not need to use the d-q axis transformation nor the information of motor’s speed. It only uses parameters of q-axis inductance and stator resistance as well as measures the current and voltage of IPMSM to achieve predictive current control. In the second year (2013/8/1~2014/7/31), we will develop a model-free predictive current controller, which is based on current-slope detection method. The importance of the second method is that it only utilizes the information of current-slope in each switching interval to predict the future stator current. Since the switching technology of the inverter used in the IPMSM drive system is not completely mature, it still has a lot of room for improvement and space for development. It is therefore of great importance to develop new switching strategies and to provide other options for the inverter-fed IPMSM drive systems. The two switching algorithms are expected to meet the requirements of low computation and high performance in many industrial applications. The project will be executed in a period of one year and eight months (2012/12/1~2014/7/31). All algorithmic software codes will be implemented using a digital signal processor (DSP). In the first year (2012/12/1~2013/7/31), we will apply the model-based predictive current controller to the IPMSM drive system to achieve the goal of satisfactory current tracking performance. In the second year (2013/8/1~2014/7/31), we will carry out the model-free predictive current controller and apply it to the same IPMSM drive system. The experimental results are expected to shed new light on the predictive current control technology for IPMSM and produce new switching strategies for the existing IPMSM drive systems. The technology accomplishments from this project are potentially transferrable to the industry sectors, and in the meantime will effectively promote the level of domestic motor drive researches.
URI: http://ntour.ntou.edu.tw/handle/987654321/34451
Appears in Collections:[電機工程學系] 研究計畫

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback