English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27454/39300
Visitors : 2536562      Online Users : 33
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/34316

Title: 仰角往復式流體動能換能系統之研發與應用
Development and Application of Reciprocating Pitch Angle Fluid Dynamic Energy Converter
Authors: 趙勝裕;陳建宏
Contributors: NTOU:Department of Systems Engineering and Naval Architecture
國立臺灣海洋大學:系統工程暨造船學系
Date: 2012
Issue Date: 2013-10-07T02:20:54Z
Publisher: 行政院國家科學委員會
Abstract: 本計畫擬發展一全新的流體動能換能器,以等弦長展翼,以一定仰角承受流體入流、產生推力,推動翼面於線性發電機上往復運動,以轉換流體動能為電能而發電。在線性發電機的兩端點,則令翼面改變仰角由正轉負、或由負轉正,令翼面往反方向運動,以達成線性往復式週期性運動。本流體動能換能器,可依環境條件而設定為水平線性位移或垂直線性位移,產生相同效果的線性週期性運動,更可以採用襟翼的方式,增加翼面所能產生的升力,以提升發電效率。又由翼面產生升力與輸出功率的理論分析知,翼面最佳線性運動速度通常會小於流體入流速度,可有效降低翼面運動對環境衝擊。 本計畫擬於三年期間內完成。每一年的計畫執行均分為實驗分析與數值分析兩部分,彼此相輔相成,以成功的完成此一全新的流體動能換能器。第一年於實驗設置上擬以NACA0012翼面、垂直翼面設置於水平位移線性發電機上,於線性發電機左、右兩側設置翼面轉向彈簧裝置,令翼面轉向、完成線性往復運動,以推動發電機發電。數值分析上則計算翼面在克服推動發電機所需的阻力條件下,由靜止啟動、至達到終端速度的流場變化,評估線性發電機所輸出的功率,並與實驗結果比較。第二年則於主翼面後方加上襟翼(Slotted flap),以提升翼面升力,提高發電效率。襟翼大小的選擇、位置的擺設、攻角的決定等,則主要以數值分析決定之,以節省人力、物力。第三年則於前兩年所發展成功的系統上,設置複數翼面,分析複數翼面對效率提升的影響,以決定系統所應採用的翼面數目。本計畫執行完成,將可為流體動能換能器開發一全新的發展領域,在學術研究及實際應用上,都能有實質貢獻。
In this three year’s project, a linear reciprocate motion hydrodynamic energy converter is developed. Lift force required to drive linear generator is generated by hydrofoil with constant chord length, constant pitch angle placed in water tunnel. Changing pitch angle devices are placed at the two ends of the linear generator, so that the airfoil will move back and forth and complete a cycle motion. The energy converter proposed can be installed vertically or horizontally to produce the same linear reciprocate cycle. In addition, flap wing can be adopted to increase lift coefficient and hence increase the energy conversion efficiency. From theoretical analysis, it is found that the linear velocity of hydrofoil is generally smaller than the incoming fluid velocity, which will effectively reduce the impact of the hydrofoil motion to the surrounding environment. For the first year, NACA 0012 is selected as the hydrofoil and installed vertically between horizontal linear generators in a circulation water tunnel. Different pitch angles of the hydrofoil are tested to search for the maximum efficiency of energy conversion. Numerical simulation of hydrofoil motion from rest to its terminal velocity is also performed. Energy conversion efficiency is evaluated and compared with experimental results. For the second year, slotted flap is used to increase the lift coefficient of hydrofoil. The size, location, and angle of the flap wing is mainly determined from numerical analysis and confirmed by experiments. For the third year, multi-hydrofoils are adopted in the system. The optimized number of hydrofoils should be adopted is determined from numerical analysis and confirmed by experiments. The project will open a new area for the study and application of more efficient and more environmental friendly hydrodynamic energy convertor.
Relation: NSC101-2221-E019-016-MY3
URI: http://ntour.ntou.edu.tw/handle/987654321/34316
Appears in Collections:[系統工程暨造船學系] 研究計畫

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback