English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 615449      Online Users : 80
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/33619

Title: 製備與分析奈米二維材料並探討運用於微電子元件
Authors: 蔡宗惠
Contributors: 國立臺灣海洋大學:光電科學研究所
Keywords: 場效應電晶體;石墨烯;場發射
Date: 2013-08
Issue Date: 2013-04-25T06:00:47Z
Publisher: 國科會
Abstract: 摘要:製備與分析奈米二維材料並探討運用於微電子元件 石墨(Graphite),硒化鎵(GaSe)及硫化鉬(MoS2)是層狀結構的材料,其原子層間是以凡 得瓦力(Van der Waals’ forces)結合。因此,使用機械剝離的方式,可以製作其材料 至單一原子層的狀態而製成石墨烯(Graphene)及單晶單層之硒化鎵和硫化鉬。石墨烯 的獨特物理性質和二維電子特性已引發各實驗團隊的注目。而單層硫化鉬也才開始有 相關的研究報告。至於單層硒化鎵則尚未有較深入的探討。 本計劃規畫為一三年實驗研究,著眼於製備、分析並構裝這三種二維奈米單原子層材 料於電子元件的運用。一般而言將高定向石墨(HOPG)使用機械剝離法可以產生約數十 微米大小的層狀結構。若使用正確的氧化矽(SiO2)厚度的矽基板,可以由光學顯微鏡 (Optical microscopy, OM)觀察到單原子層的石墨烯。同理也可運用在硒化鎵上,而 且也可以看到相似的產物。此單層材料因厚度極薄,只能以原子力顯微鏡(Atomic Force Microscopy, AFM )量測其厚度。第一年的實驗主軸為製備這三種二維奈米單原子層材 料於氧化矽/矽基板。我們設想以表面改質的方法,將基板區分為吸附區塊及街道區 域。吸附區塊可以黏附這些材料,而街道區域不吸附。如此一來,我們就可以製備出 大小為數十微米且分離約百微米的石墨烯,硒化鎵及硫化鉬單層薄膜矩陣。 第二年的實驗主軸為分析二維奈米單原子層材料。利用光學顯微鏡、原子力顯微鏡、 拉曼光譜(Raman Spectra)等分析手法判定製成之材料的結晶完整性、平坦度、層次數 目以及邊界的狀態。並利用前期研究計畫的成果以原子力顯微鏡之區域陽極氧化法修 整材料的邊界。 第三年的實驗主軸為構裝這三種二維奈米單原子層材料於電子元件的運用。將第二年 的實驗的成果加以後製程,以黃光微影(Photo lithography)技術,將金屬電極製作於 材料區塊上,如此一來可以量測材料的導電率並分析在有機械應力下導電率的變化。 如此吾人可分析載子的移動率。我們也將構裝這些二維奈米材料為主動層(Active layer)之於薄膜電晶體(Thin film transistor)內。同時利用前期研究計畫的成果製 作自組式陽極氧化絕緣層而構裝這些材料成背閘式電晶體。藉由電晶體的操作特性, 吾人可分析這些二維奈米單原子層材料之電子傳導的特殊電性。
Abstract:Preparation and characterization of two dimensional nano-materials for application in microelectronic devices This three-year project focus on the fabrication and characterization of monolayer of graphite (ie. graphene), single crystal single layer of GaSe and MoS2 for their applications in microelectronics. These materials have the layered structure which each layer is attached by van der waals force. Therefore, the crystal structures have less mechanical strength when exposed under a lateral strain. It is easy to slid layers and separate into monolayer by so call the mechanical exfoliation or “Scotch tape” method. The discovery of graphene has awarded two physics, Andre Geim and Konstatin Novoselov the 2010 Nobel price in physics which their discovery of this two-dimensional layer of carbon molecules whose unexpected properties promise to revolutionize the electronics industry. Research groups have now much effort in study of this material for the aspect in material, chemical and electrical properties. MoS2 however, has the same structure property as grapheme, there are few paper discuss the optical properties. As the GaSe, although the buck material has been fully studied during 1970s, however, the single layer of such crystal has not yet been discussed. We propose this research at first year to prepare the monolayer materials. We will using plasma method to modify substrate surface. Combine with conventional photolithography; it is possible to create “adhesive fields” separated by “non-adhesive streets” which these monolayer will adhesive on the field area only when perform the mechanical exfoliation. The results will produce the material in an ultra thin film array. We will also apply the local oxidation technology learn from our previous project to modify the edge structure of the monolayer. In second year, we will focus on the characterization for this ultra thin film array. We will observe the material by optical and scanning electron microscope. We also will use atomic force microscope to verify the thickness and number of layers from these arrays. Furthermore, the Raman spectra will apply to characterize optical properties and correlate to the AFM data. We then integrate these arrays into transistor in active area by conventional semiconductor fabrication process at third year. This year, we will focus on the strain, stress versus electrical conduction. By such experiment, we are able to observe the electron conduction and mobility variation when the material under stress. We also apply our previous project technology of self-aligned gate insulator to construct a bottom gated field effect transistor and by measure the performance of the transistor, we are able to look at the unique electron transport at these two-dimensional nano-materials.
Relation: NSC100-2112-M019-004-MY3
URI: http://ntour.ntou.edu.tw/handle/987654321/33619
Appears in Collections:[光電科學研究所] 研究計畫

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback