English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26994/38795
Visitors : 2392232      Online Users : 73
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/33252

Title: The Impact of Hsueh-Shan Tunnel Construction on the Hydrogeological Environment in Northern Taiwan
Authors: Chiu Y.;Chia Y.
Contributors: 國立臺灣海洋大學:應用地球科學研究所
Date: 2010
Issue Date: 2012-11-28T06:58:14Z
Publisher: American Geophysical Union, Fall Meeting
Abstract: abstract:The Hsueh-Shan tunnel, the fourth longest tunnel in the world, was suffered many collapses due to huge groundwater ingression and was ultimately opened to the public in June, 2006, after 15-year construction. Since the commencement of construction of tunnel, a long-term monitoring project to measure the groundwater ingression into the tunnel was conducted to ensure the safety of tunnel structure. According to the measured data obtained from the monitoring project, the average total flux of ingressive groundwater is about 450 l/sec. In order to assess the influence of this huge amount of ingressive groundwater on the regional hydrogeology near the tunnel area, a hydrogeological conceptual model was developed. We use MODFLOW-2005 to simulate groundwater flow and use the automated parameter estimation method to calibrate the model. The data on geography, geological structure, and groundwater hydrology are compiled to develop the conceptual model and the measured flux of ingressive groundwater is used to calibrate the model. The regional hydrogeological characteristics, before and after the tunnel excavation, and the water resources are evaluated by this calibrated conceptual model. The result shows that the ingression of groundwater into the tunnel is almost reach the steady state and the total amount of water is mainly contributed by about 2% loss of the total inflow of the Feitsui Reservoir. Besides, the condition of linings in the tunnel plays an important role in the safety of tunnel structure. Therefore, the long-term monitoring project should be continuously conducted to ensure the distribution of water resources and the safety of tunnel structure.
Relation: #H23E-1254
URI: http://ntour.ntou.edu.tw/handle/987654321/33252
Appears in Collections:[應用地球科學研究所] 演講及研討會

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback