English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28603/40634
Visitors : 4354503      Online Users : 205
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/32397

Title: Trapped Core Formation within a Shoaling Nonlinear Internal Wave
Authors: Ren-Chieh Lien;Eric A. D’Asaro;Frank Henyey;Ming-Huei Chang;Tswen-Yung Tang;Yiing-Jang Yang
Contributors: NTOU:Department of Marine Environmental Informatics
Keywords: Internal waves;Ocean dynamics
Date: 2012-04
Issue Date: 2012-06-15T08:02:27Z
Publisher: Journal of Physical Oceanography
Abstract: abstract:Large-amplitude (100–200 m) nonlinear internal waves (NLIWs) were observed on the continental slope in the northern South China Sea nearly diurnally during the spring tide. The evolution of one NLIW as it propagated up the continental slope is described. The NLIW arrived at the slope as a nearly steady-state solitary depression wave. As it propagated up the slope, the wave propagation speed C decreased dramatically from 2 to 1.3 m s−1, while the maximum along-wave current speed Umax remained constant at 2 m s−1. As Umax exceeded C, the NLIW reached its breaking limit and formed a subsurface trapped core with closed streamlines in the coordinate frame of the propagating wave. The trapped core consisted of two counter-rotating vortices feeding a jet within the core. It was highly turbulent with 10–50-m density overturnings caused by the vortices acting on the background stratification, with an estimated turbulent kinetic energy dissipation rate of O(10−4) W kg−1 and an eddy diffusivity of O(10−1) m2 s−1. The core mixed continually with the surrounding water and created a wake of mixed water, observed as an isopycnal salinity anomaly. As the trapped core formed, the NLIW became unsteady and dissipative and broke into a large primary wave and a smaller wave. Although shoaling alone can lead to wave fission, the authors hypothesize that the wave breaking and the trapped core evolution may further trigger the fission process. These processes of wave fission and dissipation continued so that the NLIW evolved from a single deep-water solitary wave as it approached the continental slope into a train of smaller waves on the Dongsha Plateau. Observed properties, including wave width, amplitude, and propagation speed, are reasonably predicted by a fully nonlinear steady-state internal wave model, with better agreement in the deeper water. The agreement of observed and modeled propagation speed is improved when a reasonable vertical profile of background current is included in the model.
Relation: 42(4), pp.511–525
URI: http://ntour.ntou.edu.tw/handle/987654321/32397
Appears in Collections:[海洋環境資訊系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback