National Taiwan Ocean University Institutional Repository:Item 987654321/30824
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27287/39131
Visitors : 2442446      Online Users : 35
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/30824

Title: DEMATEL可行性之探討與其修正
On the Feasibility of Dematel and Its Revision
Authors: 李選士
Contributors: NTOU:Department of Shipping and Transportation Management
國立臺灣海洋大學:航運管理學系
Keywords: DEMATEL;修正之DEMATEL
DEMATEL;revised DEMATEL
Date: 2011-08
Issue Date: 2012-04-13T01:48:24Z
Publisher: 行政院國家科學委員會
Abstract: 摘要:DEMATEL 研究方法近年來已經被廣泛運用在不同領域,例如行銷,控制系統, 安全問題,多準則決策等決策問題上。許多學者也將DEMATEL 跟很多研究方 法結合,例如ANP,MCDM,模糊理論等,發展出混合型的研究方法,並將其 應用在許多領域上。DEMATEL 係利用一個直接影響矩陣紀錄系統元件間的影響 因子。直接影響矩陣自乘一次,也就是直接影響矩陣的二次方,代表系統元件間 透過一個元件之間接影響程度。因此將直接影響矩陣的一次方,直接影響矩陣的 二次方,到直接影響矩陣的無窮次方加總起來,所得到的總影響矩陣,代表系統 元件間所有可能的影響。DEMATEL 的基本假設是直接影響矩陣的無窮次方會趨 近於零,因此總影響矩陣才會收斂存在。本研究就是要指出直接影響矩陣的無窮 次方未必會趨近於零,因此總影響矩陣可能不存在。研究計畫預計探討直接影響 矩陣的無窮次方不會趨近於零的情況,並且嘗試修正DEMATEL,以使修正後之 DEMATEL 可保證直接影響矩陣的無窮次方會趨近於零,因此總影響矩陣才會收 斂存在。本研究計畫預計完成下列成果:(1)證明原來的DEMATEL 在某些情況 下,會無法運作(2)嘗試找出無法讓DEMATEL 運作的情形 (3)找出直接影響矩陣 的無窮次方會趨近於零的必要條件 (4)依據找出之必要條件修改DEMATEL (5)驗 證修改後之DEMATEL 是健全的 (6) 將修改後之DEMATEL 運用在各總應用上, 例如應用到台灣航商權宜船(FOC)之註冊國籍選擇評估上。
Abstract:DEMATEL (Decision Making Trial and Evaluation Laboratory) has been applied in many situations, such as marketing strategies, control systems, safety problems, developing the competencies of global managers and group decision making. It has been incorporated into other methods such as ANP (Analytical Network Process), MCDM (Multiple Criteria Decision Making), fuzzy set theory, etc., to vitalize these traditional methods and explore new applications for the hybrid methods. DEMATEL models the influences of components of a system with an initial direct relation matrix. Influences of components can ripple transitively to other components, which is modeled by raising the initial direct relation matrix to powers. The total influence is computed by summing up matrices of all powers based on the assumption that the matrix raising to the power of infinity would converge to zero. The current project is trying to show that raising the initial relation matrix to the power of infinity may not converge to zero and hence total influence may not converge. The current project also tries to show that our revised DEMATEL method guarantees that the initial direct-relation matrix of infinite power will converge to zero and the total influence can be obtained accordingly.
Relation: NSC100-2410-H019-006-MY2
URI: http://ntour.ntou.edu.tw/handle/987654321/30824
Appears in Collections:[Department of Shipping and Transportation Management] Research Reports

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback