English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2350956      Online Users : 27
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/30727

Title: 求解任意領域非線性邊界值問題的新計算方法
A New Computational Approach for Solving the Nonlinear Boundary Value Problem in an Arbitrary Plane Domain
Authors: 張建仁
Contributors: NTOU:Department of Systems Engineering and Naval Architecture
國立臺灣海洋大學:系統工程暨造船學系
Keywords: 虛擬時間積分法;邊界值問題;有限差分法;保群算則
Date: 2011
Issue Date: 2012-04-13T01:21:18Z
Publisher: 行政院國家科學委員會
Abstract: 本研究計畫擬採用一多流式、指數收斂型算則的新有限差分法來求解非線性、橢圓型、任意平面領域的邊界值問題。一如所熟知的,以傳統的有限插分法來求解非線性且幾何形狀複雜的問題是很困難的。為克服這些問題,本研究將提出「虛擬長方領域內部與邊界殘留」的觀念與藉引入一虛擬時間座標而引出的形狀函數來建立此一理論架構。因引入有虛擬時間座標,吾人將得以避開處理複雜的邊界條件,在僅需使用型狀涵數且不須計算代數方程之反矩陣問題下,多流式、指數收斂型算則之有限差分法即可有效建立。此外,為增加該方法數值之穩定性,本研究將應用保群算法來處理虛擬時間積分之問題。由於保群算法與此「多樣且指數收斂型算則的新有限差分法」都具有光錐結構與多樣性之特性,吾人得以引入權重因子使得光錐結構保有多樣路徑,更使得此「多流式指數收斂型算則的新有限差分法」在其每一虛時間步驟都呈現出李代數、光錐與群之性質。最後,本研究將設計一些數值算例,來驗證本計畫所提出方法的準確性與收斂性。
In this research, a novel finite difference method (FDM) in conjunction with the manifold-based exponentially convergent algorithm (MBECA) will be adopted to solve a nonlinear elliptic boundary value problem defined in an arbitrary plane domain. As well known, it is quite difficult to solve nonlinear and geometric complexity problems by conventional FDM. To overcome these problems, the concepts of internal residual and boundary residual in a fictitious rectangular domain and shape function that we can easily detour by adding a fictitious time coordinate will be introduced in this research work. Here, by introducing a fictitious time coordinate, we do not need to directly treat complex boundary conditions only by using the shape function, and without solving an inverse matrix of algebraic equation by the MBECA. Besides, in order to increase the numerical stability of the MBECA, a group-preserving scheme (GPS) will be introduced to address fictitious time integration. Given the cone structure of the GPS and MBECA and their manifold properties, we can preserve the manifold path on the cone structure by a weighting factor such that the MBECA must also exhibit a cone construction, Lie algebra, and group properties at each fictitious time step. Finally, the accuracy and convergence behavior of this present method will be demonstrated in several numerical examples.
Relation: NSC100-2221-E019-008
URI: http://ntour.ntou.edu.tw/handle/987654321/30727
Appears in Collections:[系統工程暨造船學系] 研究計畫

Files in This Item:

File Description SizeFormat
index.html0KbHTML81View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback