English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26987/38787
Visitors : 2298174      Online Users : 131
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/29403

Title: Ontogenetic shifts in the ability of the cladoceran, Moina macrocopa Straus and Ceriodaphnia cornuta SARS to utilize ciliated protists as food source
Authors: Ram Kumar;Jiang Shiou Hwang
Contributors: NTOU:Institute of Marine Biology
國立臺灣海洋大學:海洋生物研究所
Keywords: crustacea;life table demography;somatic growth;food type effects;Tetrahymena;Colpoda
Date: 2008-06
Issue Date: 2011-10-21T03:05:43Z
Publisher: International Review of Hydrobiology
Abstract: Abstract:The ontogenetic diet shifts and age specific ability of the two cladoceran species Moina macrocopa and Ceriodaphnia cornuta to derive energy from ciliated protists have been investigated in laboratory. The postembryonic developmental rates and life table demography (longevity, age and size at first reproduction, fecundity and intrinsic rate of natural increase) of the cladocerans have been elucidated on algae (Chlorella vulgaris) and the ciliated protists (Tetrahymena pyriformis, Colpoda (c.f.) steini) as food. For either of the cladoceran, the somatic growth rate and average body size at first reproduction were higher with algal diet. During initial stages of development (0–5 days), either cladoceran realized higher rate of somatic growth on algal diet, subsequently ciliated protists supported significantly higher growth rate than the alga. Algal and ciliate diets did not differ in maximum body size (C. cornuta: 539–554 μm; M. macrocopa: 1274.8–1309 μm) reached by either of the cladocerans. The maximum body sizes were larger than size at first reproduction with either of the ciliated protists, however, with algal diet the maximum body sizes did not differ from the size at first reproduction in each case. In case of C. cornuta the generation time (20.5 ± 0.3 days on ciliate; 15.6 ± 0.17 days on algal diet), reproductive rates (net reproductive rate: 20.05 ± 3.2 on ciliate; 15.5 ± 1.2 on algal diet), and average life expectancy at hatching (27 ± 0.8 days on ciliate; 22.7 ± 0.71 days on alga) were higher, whereas the size at first reproduction (482 μm on ciliate; 521 μm on alga) was smaller with the ciliate than with an algal diet. The algal and the ciliate diets did not differ in survival (life expectancy at hatching: 9.2 ± 0.7 days) and fecundity (NRR: 23.6 ± 2.4) for M. macrocopa. The two ciliates used in the experiment did not differ in their performance as food source for either cladoceran species. Our results suggest that both the cladoceran species are able to utilize smaller ciliate (e.g., T. pyriformis, C. (c.f.) steini) as food; however with differential ability to derive energy from the ciliate diet and this ability is size and age structured in both cases.
Relation: 93(3), pp.284–296
URI: http://ntour.ntou.edu.tw/handle/987654321/29403
Appears in Collections:[海洋生物研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML256View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback