National Taiwan Ocean University Institutional Repository:Item 987654321/28531
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 27320/39164
造访人次 : 2478155      在线人数 : 47
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 进阶搜寻


题名: Application of Two Hopfield Neural Networks for Automatic Four-Element LED Inspection
作者: Chuan-Yu Chang;Chun-Hsi Li;Si-Yan Lin;MuDer Jeng
贡献者: 國立臺灣海洋大學:電機工程學系
日期: 2009-03-31
上传时间: 2011-10-21T02:37:56Z
出版者: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
摘要: Abstract:A system for the automatic inspection of LED wafer defects is proposed to detect defective dies in a four-element (aluminum gallium indium phosphide, AlGaInP) wafer. There are over 80000 dies on an LED wafer. Defective dies are typically visually identified with the aid of a scanning electron microscope. This process involves dozens of operators or engineers visually checking the wafers and hand marking the defective dies. However, wafers may not be fully and thoughtfully checked, and different observers usually find different results. These shortcomings lead to significant labor and production costs. Therefore, a solution that consists of two Hopfield neural networks, of which one is used to identify the LED die regions and the other is used to cluster the die into three groups, is proposed to facilitate the detection of defective dies in wafer images. The experimental results show that the proposed method successfully detects defective dies in a four-element wafer.
關聯: 39(3), pp.352-365
显示于类别:[電機工程學系] 期刊論文


档案 描述 大小格式浏览次数



著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈