National Taiwan Ocean University Institutional Repository:Item 987654321/28531
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27320/39164
Visitors : 2476134      Online Users : 35
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item:

Title: Application of Two Hopfield Neural Networks for Automatic Four-Element LED Inspection
Authors: Chuan-Yu Chang;Chun-Hsi Li;Si-Yan Lin;MuDer Jeng
Contributors: 國立臺灣海洋大學:電機工程學系
Date: 2009-03-31
Issue Date: 2011-10-21T02:37:56Z
Publisher: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews
Abstract: Abstract:A system for the automatic inspection of LED wafer defects is proposed to detect defective dies in a four-element (aluminum gallium indium phosphide, AlGaInP) wafer. There are over 80000 dies on an LED wafer. Defective dies are typically visually identified with the aid of a scanning electron microscope. This process involves dozens of operators or engineers visually checking the wafers and hand marking the defective dies. However, wafers may not be fully and thoughtfully checked, and different observers usually find different results. These shortcomings lead to significant labor and production costs. Therefore, a solution that consists of two Hopfield neural networks, of which one is used to identify the LED die regions and the other is used to cluster the die into three groups, is proposed to facilitate the detection of defective dies in wafer images. The experimental results show that the proposed method successfully detects defective dies in a four-element wafer.
Relation: 39(3), pp.352-365
Appears in Collections:[Department of Electrical Engineering] Periodical Articles

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback