English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26987/38787
Visitors : 2285032      Online Users : 31
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/28082

Title: Adaptive Filtering Approaches for Multispectral Image Classification Based on Eigen-feature
Authors: Lena Chang;Ching-Min Cheng;Fu-Chuan Ni
Contributors: NTOU:Department of Communications Navigation and Control Engineering
國立臺灣海洋大學:通訊與導航工程學系
Date: 2007-07-23
Issue Date: 2011-10-21T02:35:49Z
Publisher: Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International
Abstract: Abstract:In the study, we proposed two adaptive classifiers based on image eigen-features for multispectral image classification. An adaptive signal subspace projection (ASSP) approach is first proposed to detect and extract target signatures in unknown background. The weights of ASSP are adjusted adaptively by using the eigen-features which are updated recursively by the adaptive eigen-decomposition algorithm. Then, we proposed an artificial neural networks (ANN) based on back propagation multilayer perception (BPMLP) with weights trained by the image eigen-features. Simulation results validate the image eigen-features can alleviate the noise effect in classification and the proposed ASSP and BPMLP classifiers have lower detection error and fast convergence rate than conventional Wiener filter and per-pixel ANN methods.
Relation: pp.2036-2039
URI: http://ntour.ntou.edu.tw/handle/987654321/28082
Appears in Collections:[通訊與導航工程學系] 演講及研討會

Files in This Item:

File Description SizeFormat
index.html0KbHTML497View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback