English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28588/40619
Visitors : 4121841      Online Users : 88
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/28077

Title: Analysis and Comparison of Aircraft Landing Control Using Recurrent Neural Networks and Genetic Algorithms Approaches
Authors: Jih-Gau Juang;Hou-Kai Chiou;Li-Hsiang Chien
Contributors: NTOU:Department of Communications Navigation and Control Engineering
Keywords: Automatic landing system;Recurrent neural networks;Genetic algorithms;Wind disturbance
Date: 2008-10
Issue Date: 2011-10-21T02:35:48Z
Publisher: Neurocomputing
Abstract: abstract:This paper presents an intelligent aircraft automatic landing controller that uses recurrent neural networks (RNN) with genetic algorithms (GAs) to improve the performance of conventional automatic landing system (ALS) and guide the aircraft to a safe landing. Real-time recurrent learning (RTRL) is applied to train the RNN that uses gradient-descent of the error function with respect to the weights to perform the weights updates. Convergence analysis of system error is provided. The control scheme utilizes five crossover methods of GAs to search optimal control parameters. Simulations show that the proposed intelligent controller has better performance than the conventional controller.
Relation: 71(16-18), pp.3224–3238
URI: http://ntour.ntou.edu.tw/handle/987654321/28077
Appears in Collections:[通訊與導航工程學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback