English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 648881      Online Users : 49
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/28036

Title: An Efficient Hierarchical Hyperspectral Image Classification Using Binary Quaternion-Moment-Preserving Thresholding Technique
Authors: Lena Chang;Ching-Min Cheng;Yang-Lang Chang
Contributors: NTOU:Department of Communications Navigation and Control Engineering
Date: 2009-07-12
Issue Date: 2011-10-21T02:35:39Z
Publisher: Geoscience and Remote Sensing Symposium,2009 IEEE International,IGARSS 2009
Abstract: Abstract:In the study, we propose a novel unsupervised classification technique for hyperspectral images, which consists of two algorithms, referred to as the maximum correlation band clustering (MCBC) and hierarchical binary quaternionmoment-preserving (BQMP) thresholding technique. By the MCBC, we partition the bands into groups and transfer the high-dimensional image data into low-dimensional image features. Afterwards, the hierarchical BQMP approach partitions the feature image into proper regions according to the spectral characteristics. Simulation results performed on AVIRIS images have demonstrated the efficiency of the proposed approaches.
Relation: 2, pp.294-297
URI: http://ntour.ntou.edu.tw/handle/987654321/28036
Appears in Collections:[通訊與導航工程學系] 演講及研討會

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback