English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2348590      Online Users : 25
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/27920

Title: Adaptive image segmentation for region-based object retrieval using generalized Hough transform
Authors: Chi-Han Chung;Shyi-Chyi Cheng;Chin-Chun Chang
Contributors: NTOU:Department of Computer Science and Engineering
Keywords: Object recognition;Hough transform;Image segmentation;Information retrieval
Date: 2010-10
Issue Date: 2011-10-21T02:34:29Z
Publisher: Pattern Recognition
Abstract: Abstract:Finding an object inside a target image by querying multimedia data is desirable, but remains a challenge. The effectiveness of region-based representation for content-based image retrieval is extensively studied in the literature. One common weakness of region-based approaches is that perform detection using low level visual features within the region and the homogeneous image regions have little correspondence to the semantic objects. Thus, the retrieval results are often far from satisfactory. In addition, the performance is significantly affected by consistency in the segmented regions of the target object from the query and database images. Instead of solving these problems independently, this paper proposes region-based object retrieval using the generalized Hough transform (GHT) and adaptive image segmentation. The proposed approach has two phases. First, a learning phase identifies and stores stable parameters for segmenting each database image. In the retrieval phase, the adaptive image segmentation process is also performed to segment a query image into regions for retrieving visual objects inside database images through the GHT with a modified voting scheme to locate the target visual object under a certain affine transformation. The learned parameters make the segmentation results of query and database images more stable and consistent. Computer simulation results show that the proposed method gives good performance in terms of retrieval accuracy, robustness, and execution speed.
Relation: 43(10), pp. 3219-3232
URI: http://ntour.ntou.edu.tw/handle/987654321/27920
Appears in Collections:[資訊工程學系] 期刊論文

Files in This Item:

There are no files associated with this item.

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback