English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2341746      Online Users : 37
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/27595

Title: 1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs
Authors: Hsiao-Fan Chen;Shang-Jung Yang;Zhen-Han Tsai;Wen-Yi Hung;Ting-Chih Wang;Ken-Tsung Wong
Contributors: NTOU:Institute of Optoelectronic Sciences
國立臺灣海洋大學:光電科學研究所
Date: 2009
Issue Date: 2011-10-21T02:32:17Z
Publisher: Journal of Materials Chemistry
Abstract: Abstract:We have synthesized three star-shaped 1,3,5-triazine derivatives—2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine (T2T), 2,4,6-tris(triphenyl-3-yl)-1,3,5-triazine (T3T), and 2,4,6-tris(9,9′-spirobifluorene-2-yl)-1,3,5-triazine (TST)—as new electron transport (ET)-type host materials for green phosphorescent organic light-emitting devices. The morphological, thermal, and photophysical properties and the electron mobilities of these ET-type host materials are influenced by the nature of the aryl substituents attached to the triazene core. The meta–meta linkage between the 1,3,5-triazine core and the peripheral aryl moieties in T2T and T3T limited the effective extension of their π conjugation, leading to high triplet energies of 2.80 and 2.69 eV, respectively. Time-of-flight mobility measurements revealed the good electron mobilities for these compounds (each > 10−4 cm2 V−1 s−1), following the order T3T > TST > T2T. The device incorporating T2T as the host, doped with (PPy)2Ir(acac) and 1,3,5-tris(N-phenylbenzimidizol-2-yl)benzene (TBPI) as the ET layer, achieved a high external quantum efficiency (ηext) of 17.5% and a power efficiency (ηp) of 59.0 lm W−1. For the same device configuration, the T3T-based device provided values of ηext and ηp of 14.4% and 50.6 lm W−1, respectively; the TST-based device provided values of 5.1% and 12.3 lm W−1, respectively. We ascribe the superior performance of the T2T-based devices to balanced charge recombination; we ascribe the poor efficiencies of the TST-based devices to its relatively low triplet energy (2.54 eV), which did not allow efficient confinement of the triplet excitons on the green phosphorescent emitter (PPy)2Ir(acac).
Relation: 19(43), pp.8112-8118
URI: http://ntour.ntou.edu.tw/handle/987654321/27595
Appears in Collections:[光電科學研究所] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML533View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback