English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26987/38787
Visitors : 2281285      Online Users : 28
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/27096

Title: Synthesis of Fluorescent Carbohydrate-Protected Au Nanodots for Detection of Concanavalin A and Escherichia coli
Authors: Chih-Ching Huang;Chao-Tsen Chen;Yen-Chun Shiang;Zong-Hong Lin;Huan-Tsung Chang
Contributors: NTOU:Institute of Bioscience and Biotechnology
國立臺灣海洋大學:生物科技研究所
Date: 2009
Issue Date: 2011-10-21T02:22:40Z
Publisher: Analytical Chemistry
Abstract: Abstract:This study describes a novel, simple, and convenient method for the preparation of water-soluble biofunctional Au nanodots (Au NDs) for the detection of Concanavalin A (Con A) and Escherichia coli (E. coli). First, 2.9 nm Au nanoparticles (Au NPs) were prepared through reduction of HAuCl4·3H2O with tetrakis(hydroxymethyl)phosphonium chloride (THPC), which acts as both a reducing and capping agent. Addition of 11-mercapto-3,6,9-trioxaundecyl-α-D-mannopyranoside (Man-SH) onto the surfaces of the as-prepared Au NPs yielded the fluorescent mannose-protected Au nanodots (Man-Au NDs) with the size and quantum yield (QY) of 1.8 (±0.3) nm and 8.6%, respectively. This QY is higher than those of the best currently available water-soluble, alkanethiol-protected Au nanoclusters. Our fluorescent Man-Au NDs are easily purified and by multivalent interactions are capable of sensing, under optimal conditions, Con A with high sensitivity (LOD = 75 pM) and remarkable selectivity over other proteins and lectins. To the best of our knowledge, this approach provided the lowest LOD value for Con A when compared to the other nanomaterials-based detecting method. Furthermore, we have also developed a new method for fluorescence detection of E. coli using these water-soluble Man-Au NDs. Incubation with E. coli revealed that the Man-Au NDs bind to the bacteria, yielding brightly fluorescent cell clusters. The relationship between the fluorescence signal and the E. coli concentration was linear from 1.00 × 106 to 5.00 × 107 cells/mL (R2 = 0.96), with the LOD of E. coli being 7.20 × 105 cells/mL.
Relation: 81(3), pp.875–882
URI: http://ntour.ntou.edu.tw/handle/987654321/27096
Appears in Collections:[生命科學暨生物科技學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML260View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback