English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28588/40619
Visitors : 4116268      Online Users : 62
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/27024

Title: DNA mismatch binding activities in Chlorella pyrenoidosa extracts and affinity isolation of G-T mismatch binding proteins.
Authors: Todd Hsu;Kai-Ning Chang;Yi-Show Lai;Ting-Yi Jung;Gen-I Lee
Contributors: NTOU:Institute of Bioscience and Biotechnology
Keywords: Affinity adsorption;Binding proteins;Chlorella pyrenoidosa;DNA mismatch;G-T mispair
Date: 2005-04
Issue Date: 2011-10-21T02:22:21Z
Publisher: Plant Physiology and Biochemistry
Abstract: Abstract:DNA mismatch recognition proteins contained in the extracts of unicellular alga Chlorella pyrenoidosa were isolated by affinity adsorption and 2-D gel electrophoresis. Incubation of the algal extracts with a 38-mer duplex oligonucleotide carrying a single DNA simple mispair generated a few gel retardation complexes. G-T mispair was recognized significantly better than C-T, G-G, G-A, and C-C mispairs by the algal extracts and these extracts bound very weakly to G-A and C-C mispairs, displaying a universal trend of mismatch binding efficiency. The levels of mismatch recognition complexes were slightly increased in the presence of 1 mM ATP. Two 13-kDa G-T binding polypeptides possessing pIs of 5.3 and 5.5 were isolated after resolving affinity-captured proteins by 2-D gel electrophoresis and the two factors were found to bind 5.5- and 2.8-fold stronger to heteroduplex than to homoduplex DNA, respectively. No proteins significantly homologous to the two algal G-T binding proteins were found by peptide mass fingerprinting (PMF). The sequence of a peptide generated from trypsin-cleavage of one G-T binding factor (pI 5.5) could be aligned with the amino acid sequences that form the C-terminal active sites of human and mouse mismatch-specific uracil/thymine-DNA glycosylases, suggesting the possibility of this factor as an algae- or a Chlorella-specific DNA mismatch glycosylase.
Relation: 43(4), pp.309–313
URI: http://ntour.ntou.edu.tw/handle/987654321/27024
Appears in Collections:[生命科學暨生物科技學系] 期刊論文

Files in This Item:

There are no files associated with this item.

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback