English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2358028      Online Users : 34
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/25492

Title: Gene Expression and Localization of the Epinecidin-1 Antimicrobial Peptide in the Grouper (Epinephelus coioides), and Its Role in Protecting Fish Against Pathogenic Infection
Authors: Chia-Yu Pan;Jyh-Yih Chen;Yih-Shyun E. Cheng;Chun-Yao Chen;I-Hsun Ni;Jenn-Feng Sheen;Yu-Liang Pan;Ching-Ming Kuo
Contributors: NTOU:Department of Environmental Biology and Fisheries Science
Date: 2007-06
Issue Date: 2011-10-20T08:24:20Z
Publisher: DNA and Cell Biology
Abstract: abstract:Epinecidin-1 is an antimicrobial peptide and plays a vital role in protecting fish against pathogenic infection. As a mimic of a grouper epinecidin-1 peptide, it has tertiary structures that closely resemble those of pleurocidin found in the winter flounder (Pleuronectes americanus). The tissue-specific, lipopolysaccharide (LPS)–stimulation-specific, and poly(I):poly(C)-stimulation-specific expressions of the grouper (Epinephelus coioides) epinecidin-1 antimicrobial peptide were determined using a comparative reverse-transcription polymerase chain reaction. Results of the tissue distribution analysis revealed high levels of epinecidin-1 messenger RNA (mRNA) in the head kidneys, intestines, and skin. Expression of epinecidin-1 mRNA was dose-dependently stimulated by both LPS and poly(I):poly(C). Immunohistochemical analysis with the polyclonal antiserum of a grouper epinecidin-1 peptide (rabbit polyclonal antibody) showed that the peptide was localized with the epinecidin-1 antibody in the gills and intestines. Two synthetic peptides of the grouper epinecidin-1 peptide (g-ple 22–51 and g-ple 22–42) and one winter flounder pleurocidin as a control exhibited high antimicrobial activities against gram-negative or gram-positive bacteria. In addition, peptide treatment was effective in promoting a significant increase in fish survival after the injection of Vibrio vulnificus in tilapia (Oreochromis mossambicus) and grouper. These results are relevant to the design of prophylactic and therapeutic strategies to counter bacterial infections, especially for preventing or ameliorating immune defects in fish during bacterial infections.
Relation: 26(6), pp.403-413
URI: http://ntour.ntou.edu.tw/handle/987654321/25492
Appears in Collections:[環境生物與漁業科學學系] 期刊論文

Files in This Item:

There are no files associated with this item.

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback