English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28588/40619
Visitors : 4198454      Online Users : 52
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/25439

Title: Speed and Evolution of Nonlinear Internal Waves Transiting the South China Sea
Authors: Matthew H. Alford;Ren-Chieh Lien;Harper Simmons;Jody Klymak;Steve Ramp;Yiing Jang Yang;David Tang;Ming-Huei Chang
Contributors: NTOU:Department of Marine Environmental Informatics
Keywords: Internal waves
Date: 2010-06
Issue Date: 2011-10-20T08:23:14Z
Publisher: Journal of Physical Oceanography
Abstract: abstract:In the South China Sea (SCS), 14 nonlinear internal waves are detected as they transit a synchronous array of 10 moorings spanning the waves’ generation site at Luzon Strait, through the deep basin, and onto the upper continental slope 560 km to the west. Their arrival time, speed, width, energy, amplitude, and number of trailing waves are monitored. Waves occur twice daily in a particular pattern where larger, narrower “A” waves alternate with wider, smaller “B” waves. Waves begin as broad internal tides close to Luzon Strait’s two ridges, steepening to O(3–10 km) wide in the deep basin and O(200–300 m) on the upper slope. Nearly all waves eventually develop wave trains, with larger–steeper waves developing them earlier and in greater numbers. The B waves in the deep basin begin at a mean speed of ≈5% greater than the linear mode-1 phase speed for semidiurnal internal waves (computed using climatological and in situ stratification). The A waves travel ≈5%–10% faster than B waves until they reach the continental slope, presumably because of their greater amplitude. On the upper continental slope, all waves speed up relative to linear values, but B waves now travel 8%–12% faster than A waves, in spite of being smaller. Solutions of the Taylor–Goldstein equation with observed currents demonstrate that the B waves’ faster speed is a result of modulation of the background currents by an energetic diurnal internal tide on the upper slope. Attempts to ascertain the phase of the barotropic tide at which the waves were generated yielded inconsistent results, possibly partly because of contamination at the easternmost mooring by eastward signals generated at Luzon Strait’s western ridge. These results present a coherent picture of the transbasin evolution of the waves but underscore the need to better understand their generation, the nature of their nonlinearity, and propagation through a time-variable background flow, which includes the internal tides.
Relation: 40(6), pp.1338–1355
URI: http://ntour.ntou.edu.tw/handle/987654321/25439
Appears in Collections:[海洋環境資訊系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback