English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2313673      Online Users : 31
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/24754

Title: Mineralogical and geochemical changes in the sediments of the Okhotsk Sea during deglacial periods in the past 500 kyrs
Authors: Ya-Jiun Liu;Sheng-Rong Song;Teh-Quei Lee;Meng-Yang Lee;Yaw-Lin Chen;Huei-Fen Chen
Contributors: NTOU:Institute of Applied Geosciences
國立臺灣海洋大學:應用地球科學研究所
Keywords: IMAGES;Okhotsk Sea;mineralogy;major chemistry;deglaciation
Date: 2006-08
Issue Date: 2011-10-20T08:17:35Z
Publisher: Global and Planetary Change
Abstract: abstract:Characterized by extended seasonal sea-ice cover, the Okhotsk Sea is widely considered one possible source of the North Pacific Intermediate Water (NPIW). Therefore, reconstructing the characteristics of the sediments that resulted from the ice-melting pulses of this northeastern Asian sea during glacial–interglacial cycles is crucial to understanding past climatic changes and NPIW formation in the northwest Pacific Ocean. Here, we produced the detailed mineralogy and geochemistry of the upper 20 m of the sediments of IMAGES Core MD012414, which was drilled in the central part of the Okhotsk Sea. This depth covers the last 500 kyrs. The mineralogical data show that in glacial periods, the sediments were predominantly composed of quartz and plagioclase with a volume of about 80%, indicating that they were mainly from the surrounding landmasses. During interglacial periods, however, biogenetic calcite and amorphous opal drastically increased from less than 5% to a remarkable 40–60%, while the element ratios Mg/Al, Ca/Al and Si/Al also had anomalous increases from 0.2 to 0.5, 0.12 to 1.2 and 3.5 to 10, respectively. These characteristics of the sediments in interglacial periods strongly suggest that the melting of permanent ice opened a gateway, thereby letting the northwest Pacific warmer water flow into the Okhotsk Sea, which subsequently increased biogenetic productivity during the deglacial periods. In addition, in early interglacial periods, the bottom water became anoxic, as evidenced by the presence of dolomite and the enrichment of the Mn/Al and P/Al ratios more than 25 to 200 times. The fact that these trends did not occur in stage 7 strongly suggests that stage 8 may have been a warmer glacial period.
Relation: 53(1-2), pp.47–57
URI: http://ntour.ntou.edu.tw/handle/987654321/24754
Appears in Collections:[應用地球科學研究所] 期刊論文

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback