English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28588/40619
Visitors : 4199954      Online Users : 46
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/24626

Title: 以雙互換邊界元素法求解修正型緩坡方程式
A Numerical Solution of Modified Mild-Slope Equation Using Dual Reciprocity Boundary Element Method
Authors: 蕭松山;張君名;溫志中
Contributors: NTOU:Department of Harbor and River Engineering
國立臺灣海洋大學:河海工程學系
Keywords: 雙互換邊界元素法;修正型緩坡方程式;Homma 圓島;沒水圓形淺灘
dual reciprocity boundary element method;modified mild-slope equation;Homma's island;circular submerged shoal
Date: 2010-06-01
Issue Date: 2011-10-20T08:13:30Z
Publisher: 海洋工程學刊
Abstract: 摘要:本文以修正型緩坡方程式(MMSE)爲解析波浪折、繞射以及反射共同效應之控制方程式,爲避免求解邊界積分方程式過程中所遭遇的複雜領域積分,應用雙互換邊界元素法(Dual Reciprocity Boundary Element Method, DRBEM)進行求解。數值計算例分別爲Homma圓島與沒水圓形淺灘,並且與Homma圓島之淺水長波解析解、沒水圓形淺灘之實驗值分別進行比較。由於在長波條件下MMSE之底床延伸項較不顯著,因此本文以720 sec 爲入射波週期進行計算,DRBEM-MMSE數值結果與解析解之結果十分吻合。此外,與沒水圓形淺灘實驗值比較結果,顯示DRBEM-MMSE之波浪模式有良好之準確度,對於圓形淺灘後方之計算準確度亦有顯著提升。本文成功的應用雙互換邊界元素法求解修正型緩坡方程式,且由於考量底床延伸項的關係顯著改善DRBEM-MSE之計算準確度。
abstract:In this investigation, the modified mild-slope equation was solved by using dual reciprocity boundary element method (DRBEM) in order to avoid the corresponding domain integration due to non-homogenous terms of the wave governing equation. The numerical results of Homma's island and circular submerged shoal cases were compared with the analytic and numerical solutions and experiment results, respectively. In order to compare the numerical results of modified mild-slope equation with the analytic solutions of conventional mild-slope equation, the numerical experiments of wave period 720 sec were conducted in the limitation of long wave condition due to the lightly effect of bottom slope-square and curvature terms. Both of the numerical results of DRBEM-MSE and DRBEM-MMSE are in good agreement with analytic solution of the conventional MSE. Furthermore, the comparisons between the numerical and experiment results indicate that the results of DRBEM-MMSE can obtain the more accurate results than those of DRBEM-MSE. Finally, we can conclude that the DRBEM can be applied to solve the MMSE successfully and DRBEM-MMSE get more accurate results due to taking the bottom extended terms into account.
Relation: 10(1), pp.65-86
URI: http://ntour.ntou.edu.tw/handle/987654321/24626
Appears in Collections:[河海工程學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML146View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback