English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2350158      Online Users : 37
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/24343

Title: Analytical study and numerical experiments for degenerate scale problems in boundary element method using degenerate kernels and circulants
Authors: J.T. Chen;J.H. Lin;S.R. Kuo;Y.P. Chiu
Contributors: NTOU:Department of Harbor and River Engineering
國立臺灣海洋大學:河海工程學系
Keywords: Boundary elements;Degenerate scale;Circulant;Degenerate kernel
Date: 2001-10
Issue Date: 2011-10-20T08:11:33Z
Publisher: Engineering Analysis with Boundary Elements
Abstract: abstract:For a potential problem, the boundary integral equation approach has been shown to yield a nonunique solution when the geometry is equal to a degenerate scale. In this paper, the degenerate scale problem in boundary element method (BEM) is analytically studied using the degenerate kernels and circulants. For the circular domain problem, the singular problem of the degenerate scale with radius one can be overcome by using the hypersingular formulation instead of the singular formulation. A simple example is shown to demonstrate the failure using the singular integral equations. To deal with the problem with a degenerate scale, a constant term is added to the fundamental solution to obtain the unique solution and another numerical example with an annular region is also considered.
Relation: 25(9), pp.819–828
URI: http://ntour.ntou.edu.tw/handle/987654321/24343
Appears in Collections:[河海工程學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML271View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback