English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2313484      Online Users : 33
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/24280

Title: Interaction of water waves with vertical cylinders using null-field integral equations
Authors: Jeng-Tzong Chen;Ying-Te Lee;Yi-Jhou Lin
Contributors: NTOU:Department of Harbor and River Engineering
國立臺灣海洋大學:河海工程學系
Keywords: Null-field integral equation;Degenerate kernel;Fourier series;Helmholtz equation;Water wave;Scattering
Date: 2009-04
Issue Date: 2011-10-20T08:11:04Z
Publisher: Applied Ocean Research
Abstract: abstract:The scattering of water waves by bottom-mounted vertical circular cylinders is solved by using the null-field integral equations in conjunction with degenerate kernels and Fourier series to avoid calculating the Cauchy and Hadamard principal values. In the implementation, the null-field point can be exactly located on the real boundary owing to the introduction of degenerate kernels for fundamental solutions. An adaptive observer system of polar coordinates is considered to fully employ the properties of degenerate kernels. For the hypersingular equation, vector decomposition for the radial and tangential gradients is carefully considered. This method can be seen as a semi-analytical approach since errors attribute from the truncation of Fourier series. Neither hypersingularity in the Burton and Miller approach nor the CHIEF concept was required to deal with the problem of irregular frequencies. Five advantages of free of calculating principal value, well-posed algebraic system, convergence rate of exponential order, meshfree and elimination of boundary-layer effect, are achieved by using the present approach. Numerical results are given for the forces and free-surface elevation around the circular boundaries. Also, the near-trapped behavior arisen from the physical resonance is detected. A general-purpose program for water wave impinging several circular cylinders with arbitrary number, radii, and positions was developed. Several examples of water wave structure interaction by vertical circular cylinders were demonstrated to see the validity of the present formulation.
Relation: 31(2), pp.101–110
URI: http://ntour.ntou.edu.tw/handle/987654321/24280
Appears in Collections:[河海工程學系] 期刊論文

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback