English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27283/39126
Visitors : 2441537      Online Users : 39
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/23898

Title: 斜薄膜微蠕動幫浦之最佳化設計與製作
Authors: 林永川;沈志忠;黃男農
Contributors: NTOU:Department of Mechanical and Mechatronic Engineering
國立臺灣海洋大學:機械與機電工程學系
Keywords: 軟微影技術;聚二甲基矽氧烷(PDMS);微流體光罩;斜薄膜微蠕動幫浦
soft lithography;micro peristaltic pump with slanted membranes;microfluidic photomask
Date: 2009-11
Issue Date: 2011-10-20T08:08:37Z
Publisher: 中國機械工程學會第二十六屆全國學術研討會
Abstract: 一般氣動式微蠕動幫浦是以三個平面薄膜作為致動元件,由高壓空氣驅動平面薄膜造成離散式的蠕動,推擠流體前進。由於平面薄膜變形會迫使薄膜下各一半液體體積往流道兩邊移動,因而降低了幫浦的效能。為克服上述問題,本實驗室自創一斜薄膜微蠕動幫浦,利用兩個對立的斜面薄膜取代一般三個平面薄膜的微蠕動幫浦。當通入高壓空氣時,薄膜會由較薄處開始變形,推動大部份流體向前流動,因此能增進幫浦效能,並且已經實驗證實斜薄膜微蠕動幫浦的可行性。
有鑑於斜薄膜微蠕動幫浦的薄膜厚度分佈是影響幫浦流量性能的關鍵因素,本研究利用CFD-RC模擬軟體計算薄膜最佳厚度分佈,達到提升幫浦流量之目的。幫浦製作是利用低成本的微流體灰階光罩,定義出三維的母膜結構,以PDMS翻製出元件(空氣薄膜),最後與主流道接合完成幫浦構造。經實驗發現,幫浦工作頻率為14 Hz時具有最大流量54.41 μl/min,而其可抵抗最大背壓為135 mmH2O。比較優化前後之幫浦效能,流量效能提升約20 %,並可多承受10 mm以上的水柱高背壓,無論在流量或是抵抗背壓的能力,均有顯著提升。
Most of micro-peristaltic pumps use three plane polydimethylsiloxane (PDMS) membranes as actuating membranes. Through sequential control of deflections of these membranes, a discrete peristaltic pumping motion is generated. We design a bi-directional micro pneumatic peristaltic pump driven by slanted membranes. Our micro-peristaltic pump has two opposite slanted PDMS membranes tandem along the fluid channel. It will produce continuous and asymmetric deflections under increasing pneumatic pressure. Experimental results show that our peristaltic pump achieves much higher maximum flow rate than that of a micro peristaltic pump with three flat membranes of similar size.
Since the pumping performance of the peristaltic pump with slanted membranes depends highly on the thickness distribution of the membranes, the objective of this study is to find the optimal thickness distribution of the membranes. We use the Simulation Manager module in the simulation software CFD-RC to achieve the optimal design. The slanted membranes are fabricated using microfluidic gray-scale mask, and bonded with a liquid flow channel to complete the micro peristaltic pump. Experimental results show that the micro peristaltic pump has the maximum flow rate of 54.41 μl/min at 14 Hz, and it can stand 135 mmH2O backpressure. Compared to the original peristaltic pump with slanted membranes, the optimized one improve about 20 percent of maximum flow rate and 10 mmH2O of backpressure.
URI: http://ntour.ntou.edu.tw/handle/987654321/23898
Appears in Collections:[機械與機電工程學系] 演講及研討會

Files in This Item:

File Description SizeFormat
index.html0KbHTML97View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback