English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2324052      Online Users : 57
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/23868

Title: 三維微流體透鏡製作與特性量測
Fabrication and Characterization of Three-Dimensional Microfluidic Lenses
Authors: 劉岳政;李睿軒;沈志忠
Contributors: NTOU:Department of Mechanical and Mechatronic Engineering
國立臺灣海洋大學:機械與機電工程學系
Keywords: 微機電系統製程;流體透鏡;三維微流道;共軛焦顯微鏡
MEMS;microfluidic lens;3D microchannel;confocal microscope
Date: 2009-11
Issue Date: 2011-10-20T08:08:31Z
Publisher: 中國機械工程學會第二十六屆全國學術研討會
Abstract: Microfluidic Lenses have important applications, such as: cell sorting、optical signal detection, and so on. A two-dimensional (2-D) microfluidic lens is usually formed by 2-D hydrodynamic focusing with a core flow and a sheath flow of high and low refractive indexes respectively. However, such a lens can only focus light in the horizontal plane, but not in the vertical plane. Moreover, the core flow touching the upper and lower wall causes light loss as refractive indexes of both core flow and channel wall are quite close.
In this thesis, a 3-D microfluidic lens is produced by a 3-D hydrodynamic focusing structure. The core flow is therefore completely focused at the center of the channel by surrounding exterior sheath flow of lower refractive index. By changing the ratio of core/sheath flow rates, the curvature of the microfluidic lens can be adjusted accordingly. In addition, a confocal microscope was used to observe the 3-D geometry of the 3-D micrfluidic lenses.
Experimental results show no major difference in focusing length for 2-D and 3-D microfluidic lenses at same core/sheath flow rates. However, light intensity of the three-dimensional microfluidic lens is 63% higher than the 2-D microfluidic lens. This proves that the 3-D microfluidic lens has better optic focusing capability.
微流體透鏡可應用於多方面,例如:生醫化學反應陣列、細胞分類、光訊號偵測......等,一般的二維流體聚焦,流體只受到左右兩側相夾,而上下仍接觸微流道壁面,造成入射光源穿過二維流體透鏡時,入射光在水平方向有聚焦效果,但在垂直方向則無聚焦效果。會漸逝較多的光源,為改善此一問題,本研究主要利用微機電系統製程製作三維微流體透鏡。
三維微流體透鏡晶片是以本實驗室開發的三維微流道結構,利用邊鞘流體將液芯流體夾擠在中間,而流經一矩形流道而形成三維微流體透鏡。經由邊鞘、液芯相流體流量比,可以改變兩介面間的形狀進而達到流體透鏡曲率的變化。
探討二維流體透鏡與三維流體透鏡之差異,觀察兩者通過相同的折射條件後,光能量與聚焦點的差異,可發現兩者在聚焦點上並無太大之差異,但在光能量量測上,三維流體透鏡最大光能量優於二維流體透鏡0.63倍,證實多一個維度的聚焦可以得到更佳的光學特性。另外使用共軛焦顯微鏡(confocal microscope) 掃描三維微流體立體面,可以看到平行流道的透鏡幾何外觀及三維微流體透鏡的立體圖,以證明三維微流體透鏡的形成。
URI: http://ntour.ntou.edu.tw/handle/987654321/23868
Appears in Collections:[機械與機電工程學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML167View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback