English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2343021      Online Users : 46
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/23776

Title: The Lie-Group Shooting Method for Solving Classical Blasius Flat-Plate Problem
Authors: Chih-Wen Chang;Jiang-Ren Chang;Chein-Shan Liu
Contributors: NTOU:Department of Mechanical and Mechatronic Engineering
Keywords: One-step group preserving scheme;Blasius equation;Boundary value problem;Shooting method;Estimation of missing initial condition
Date: 2008
Issue Date: 2011-10-20T08:08:13Z
Publisher: CMC: Computers Materials and Continua
Abstract: Abstract:In this paper, we propose a Lie-group shooting method to deal with the classical Blasius flat-plate problem and to find unknown initial conditions. The pivotal point is based on the erection of a one-step Lie group element$\mathbf {G}(T)$ and the formation of a generalized mid-point Lie group element$\mathbf {G}(r)$. Then, by imposing$\mathbf {G}(T) = \mathbf {G}(r)$ we can derive some algebraic equations to recover the missing initial conditions. It is the first time that we can apply the Lie-group shooting method to solve the classical Blasius flat-plate problem. Numerical examples are worked out to persuade that the novel approach has better efficiency and accuracy with a fast convergence speed by searching a suitable$r \in (0,\tmspace +\thickmuskip {.2777em} 1)$ with the minimum norm to fit the targets.
Relation: 7(3), pp.139-154
URI: http://ntour.ntou.edu.tw/handle/987654321/23776
Appears in Collections:[機械與機電工程學系] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback