English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27308/39152
Visitors : 2454620      Online Users : 255
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/23605

Title: Preparation and Properties of Ti50Cu28Ni15Sn7 Bulk Metallic Glass by Vacuum Hot Pressing
Authors: H.M. Lin;C.K. Lin;R.R. Jeng;H.Y. Bor;P.Y. Lee
Contributors: NTOU:Institute of Materials Engineering
Date: 2007-09-26
Issue Date: 2011-10-20T08:06:44Z
Abstract: Abstract:Amorphous Ti50Cu28Ni15Sn7 alloy powders were synthesized by a mechanical alloying (MA) technique. Differential scanning calorimetry (DSC) results showed that, after 7 hours of exposure to the milling process, amorphous Ti50Cu28Ni15Sn7 alloy powders exhibit a wide supercooled liquid region of 61 K. Consolidation of amorphous powders were performed at a temperature slightly higher than the glass transition temperature under a pressure of ∼1.2 GPa, and bulk metallic glass (BMG) discs can be prepared successfully. However, we noticed partial crystallization during the hot pressing process and were not able to achieve full densification of BMG. The Vickers microhardness of Ti50Cu28Ni15Sn7 BMG was 634 kg/mm2, and the trace of the indentation revealed that pre-existing particle boundaries or interfaces between nanocrystals and amorphous matrix may serve as the crack initiation sites. Thus, typical brittle failure of Ti50Cu28Ni15Sn7 BMG was observed and resulted in relatively low fracture stress compared to that estimated by the microhardness.
Relation: 39(8), pp.1857-1861
URI: http://ntour.ntou.edu.tw/handle/987654321/23605
Appears in Collections:[材料工程研究所] 期刊論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback