National Taiwan Ocean University Institutional Repository:Item 987654321/23456
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40652
Visitors : 764764      Online Users : 58
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item:

Title: Air Oxidation of FeCoNi-Base Equi-Molar Alloys at 800–1000°C
Authors: W. Kai;W. L. Jang;R. T. Huang;H. H. Hsieh;C. F. Du
Contributors: NTOU:Institute of Materials Engineering
Keywords: Oxidation;equi-molar alloys;Fe–Ni–Co–Cu–Cr
Date: 2005-04-01
Issue Date: 2011-10-20T08:06:17Z
Publisher: Oxidation of Metals
Abstract: Abstract:The oxidation behavior of FeCoNi, FeCoNiCr, and FeCoNiCrCu equi-molar alloys was studied over the temperature range 800–1000 °C in dry air. The ternary and quaternary alloys were single-phase, while the quinary alloy was two-phase. In general, the oxidation kinetics of the ternary and quinary alloys followed the two-stage parabolic rate law, with rate constants generally increasing with temperature. Conversely, three-stage parabolic kinetics were observed for the quaternary alloy at T 900°C. The additions of Cr and Cu enhanced the oxidation resistance to a certain extent. The scales formed on all the alloys were triplex and strongly dependent on the alloy composition. In particular, on the ternary alloy, they consist of an outer-layer of CoO, an intermediate layer of Fe3O4, and an inner-layer of CoNiO2 and Fe3O4. Internal oxidation with formation of FeO precipitates was also observed for this alloy, which had a thickness increasing with temperature. The scales formed on the quaternary alloy consisted of an outer layer of Fe3O4 and CoCr2O4, an intermediate layer of FeCr2O4 and NiCr2O4, and an inner layer of Cr2O3. Finally, the scales formed on the quinary alloy are all heterophasic, consisting of an outer layer of CuO, an intermediate-layer of CuO and Fe3O4, and an inner-layer of Fe3O4, FeCr2O4, and CuCrO2. The formation of Cr2O3 on the quaternary alloy and possibly that of CuCrO2 on the quinary alloy was responsible for the reduction of the oxidation rates as compared to the ternary alloy.
Relation: 63(3-4), pp.169-192
Appears in Collections:[Institute of Materials Engineering] Periodical Articles

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback