English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27287/39131
Visitors : 2443586      Online Users : 34
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/18902

Title: 應用表面處理技術研製及改善太陽電池整體效率
The Study and Fabrication of Solar Cells with Overall Efficiencies Improved by Surface Treatment Technologies
Authors: Yuang-Tung Cheng
Contributors: NTOU:Department of Electrical Engineering
Keywords: 酸性蝕刻;單晶矽;多晶矽;氫氣氛處理;轉換效率;抗反射膜
Acid etching;Multi-crystalline silicon;Single crystalline silicon;Hydrogen forming gas;Conversion efficiency;Anti-reflection coating
Date: 2010
Issue Date: 2011-07-04T01:07:39Z
Abstract: 本論文首先研究提供一個簡單且高效能的酸性蝕刻製程技術,應用於多晶矽太陽電池表面處理。傳統上,利用氫氧化鉀(KOH)於單晶矽上產生異向性蝕刻,以製作金字塔抗反射結構。由於多晶矽有很多晶粒構成,而且晶粒的方向隨機分佈,使用異向性蝕刻方法形成的表面蝕刻產生的效果是不理想的。本論文研究利用酸蝕刻來對多晶矽晶片進行表面粗糙化,透過最佳化溶液比例HF:HNO3:H2O =15:1:2.5,蝕刻時間為60秒得到最佳的表面結構。在氫氣氛處理方面,因利用氫氣可鈍化矽和二氧化矽接面能降低矽表面的復合速率,所以在單晶矽及多晶矽太陽電池的提取比例分別提升3.75%和8.28%。從增加太陽能電池的吸光率方面,除了可將矽晶基板表面做粗糙結構化外,另一可以有效降低反射損失的方式,是在矽晶表面塗佈抗反射膜。本論文應用電漿增強化學氣相沉積鍍製氮化矽薄膜研製改善太陽能電池之效能,調變參數以改變薄膜的折射率、透射率、吸收率、反射率等,達到降低太陽能電池表面之反射率。另一方面,氮化矽薄膜除可有效的減少入射光的反射之外,還能產生鈍化效果,因此可使太陽能電池效能提升。應用最佳酸性溶液比例蝕刻太陽表面後,再鍍製雙層抗反射膜可以製作出最佳轉換效率16.34%的太陽電池。 在有機太陽能電池方面,在聚對苯二甲酸乙二醇酯(Polyethylene terephthalate, PET)基板表面及沈積氧化銦錫薄膜(indium tin oxide, ITO)後的表面進行表面處理。經由實驗證明,利用洗潔劑表面處理後的基板經直流磁控濺鍍系統沈積的ITO薄膜,在可見光範圍具有84%平均穿透率及5.610-4 Ω-cm之電阻係數為高分子太陽能電池最佳元件參數。在ITO薄膜表面進行處理後,研製PET/ITO/PEDOT/P3HT:PCBM/Al結構之有機太陽能電池。可得知ITO薄膜表面經洗潔劑處理5分鐘再用紫外光臭氧處理20分鐘的有機太陽能電池的轉換效率為2.12%。因此本論文利用最佳化的塑膠基板表面處理方法,以增加材料對基板之附著性,並在鍍製低阻值、高光穿透率之透明導電薄膜後再進行表面處理而使功函數提升,如此可提高元件電極附近之能帶並能增加元件內部之電場外,還能提升太陽電池整體效能。
In this thesis, we show that efficiency of multi-crystalline silicon (mc-Si) solar cells may be improved by texturization. Alkali etchant can not produce uniformly textured surface to generate satisfactory open circuit voltage (VOC) and the efficiency of the mc-Si due to the unavoidable grain randomly oriented with higher steps formed during etching process. Optimized acid etching conditions are found which lower the reflectance (R) for mc-Si substrate below levels obtained by alkali etching. Short-circuit current (ISC) measurements on acid textured cells reveal that there is a significantly enhanced current gain exceeding expectation due to reduced reflection. The optimal acid etching ratio HF:HNO3:H2O =15:1:2.5 and an etching time of 60s. For the major effect of forming gas (FG) treatment on solar cell performance is the fill-factor values, which increase 3.75% and 8.28%, respectively, on sc-Si and mc-Si solar cells. The developed mc-Si solar cell by proper H2 FG treatment is quite suitable for commercial applications. In this work, industrial-type mc-Si solar cells with area of 125mm × 125mm are acid etched to produce simultaneously POCl3 emitters and anti-reflection coating by plasma-enhanced chemical vapor deposited (PECVD). Using our optimal acid etching solution ratio, we are able to fabricate mc-Si solar cells of 16.34% conversion efficiency with double layers silicon nitride (Si3N4) coating. From our experiment, we find that depositing double layers silicon nitride coating on mc-Si solar cells can get the optimal performance parameters. In this thesis, surface treatments on polyethylene terephthalate with polymeric hard coating (PET-HC) substrates are described. The effect of the contact angle on the treatment is first investigated. It has been observed that detergent is quite effective in removing organic contamination on the flexible PET-HC substrates. The various ITO surface treatments are made for improving the performance of the finally developed organic solar cells with structure Al/P3HT:PCBM /PEDOT:PSS/ITO/PET. It is found that the parameters of the ITO including resistivity, carrier concentration, transmittance, surface morphology, and work function depended on the surface treatments and significantly influence the solar cell performance. With the optimal conditions for detergent treatment on flexible PET substrates, the ITO film with a resistivity of 5.6×10-4 Ω-cm and average optical transmittance of 84.1% in the visible region are obtained. The optimal ITO surface treated by detergent for 5 min and then by UV ozone for 20 min exhibits the best work function (WF). In the case of optimal treatment with the organic photovoltaic device, meanwhile, 36.6% enhancement in short circuit current density and 92.7% enhancement in conversion efficiency over the untreated solar cell are obtained.
URI: http://ethesys.lib.ntou.edu.tw/cdrfb3/record/#G0D95530003
Appears in Collections:[電機工程學系] 博碩士論文

Files in This Item:

File Description SizeFormat

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback