English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27287/39131
Visitors : 2442243      Online Users : 33
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/18836

Title: 利用雷射處理與抗反射膜研製改善矽基太陽電池效能
The Study and Fabrication of Si-based Solar-cell Efficiency Improved by Laser Treatment and Anti-reflection Films
Authors: yu-hung Lin
林育閎
Contributors: NTOU:Department of Electrical Engineering
國立臺灣海洋大學:電機工程學系
Keywords: 釹元素的釔鋁石榴石晶體雷射;雷射粗糙化;損傷移除;雷射熔融態;氫氧化鉀;抗反射薄膜
laser textures;damage removal;Conversion efficiency;anti-reflective film;Parallel Groove;Vertical rip- stop;KOH
Date: 2010
Issue Date: 2011-07-04T01:04:45Z
Abstract: 摘要 本研究提供一個簡單且高效能的物理雷射製程技術,於矽晶圓表面進行粗糙化處理,進而改善現有太陽能之效能。利用模擬軟體PC1D v5.9 進行設計與分析,再用Nd:YAG雷射進行表面處理,最後使用氫氧化鉀(KOH)進行損傷移除(damage remove)。藉由觀察太陽電池重要性能參數-轉換效率(conversion efficiency, η)、開路電壓(open circuit voltage, VOC)、短路電流(short circuit current, JSC)、提取比例(fill factor, FF)及量子效應(quantum efficiency,QE),在實驗中隨著雷射處理的功率增加,就其變化情形,進行研究分析。經雷射平行溝槽型(Parallel Groove-type)與及垂直井字格型(Vertical rip-stop type)粗糙化處理實驗結果,發現以垂直井字格型處理矽晶太陽電池表面所得到的結果是最佳的。在單晶矽(sc-Si)太陽電池中,雷射功率調整20W時,得其平均反射率由37.72%下降到12.16%,全波長區段反射率平均降低2.1倍。而在多晶矽太陽能電池中,經由雷射功率調整20W時,其平均反射率28.54%降低到7.39%全波段平均反射率降低2.86倍。 在處理單晶矽太陽電池之雷射功率分別調整5、10、15、20 W並以平行溝槽型進行表面處理,其短路電流分別為18.01、22.51、28.99、27.10 mA,光電轉換效率分別是5.96%、8.976%、12.30%、11.13%;若用垂直井字格型進行表面處理,雷射功率分別調整5、10、15、20 W,太陽電池短路電流則分別為26.2、27.85、27.06、21.79 mA,光電轉換效率分別為10.87%、12.74%、11.03%、7.54%。 在處理多晶矽太陽電池方面,未處理前之轉換效率與短路電流分別為6.06%與18.37 mA,若將雷射功率分別調整5、10、15、20 W進行表面處理,其短路電流分別為22.51、26.16、27.06、24.87 mA,光電轉換效率分別是8.79%、11.02%、11.24%、10.17%,因此可證明Nd:YAG雷射處理之步驟,也能套用於多晶矽(mc-Si)太陽能電池上。 經由實驗結果得知,運用Nd:YAG (1064 nm)雷射粗糙化處理後之太陽電池,對轉換效率會有提升作用。對於雷射處理後表面形成比例很高的深寬比值(large height-to-width aspect ratio),會使得反射率下降,並讓入射光子產生折射及反射現象增加了光子停留時間,進而產生更多的光電流,因此可以提升轉換效率。
Abstract This thesis provides a simple and efficient physical laser process technology, the rough surface of silicon wafer. By using PC1D simulation software design and analysis, and then neodymium-doped yttrium aluminium garnet (Nd:YAG) laser surface treatment, the last step is using potassium hydroxide (KOH) to remove the damage. In the experiment, the current-voltage (I-V) curve of crystalline silicon solar cells are recorded by I-V tester, to check the conversion efficiency (η), open circuit voltage (Voc), short circuit current (Jsc), fill factor (FF) , and quantum efficiency(QE) reflecting to the adoption of laser surface treatment. The subject of the present work is the development of laser grooves for surface texturation. With the appropriate selection of the laser processing conditions the uniform texture corresponding to Parallel Groove-type and Vertical rip-stop type can be produced. Total reflectance was measured over the wavelength range from 300 nm to 1200 nm. As for the sc-Si wafer optimal laser treatment (Vertical rip-stop type), the average reflectivity values drastically decrease to 37.12% and 12.16%, respectively for without textured and textured solar cells. For the best laser treatment on mc-Si, the average reflectivity value is 7.39 %, while 23.89% on mc-Si without treatment. The sc-Si wafer laser texture of homogeneous structure to form of Parallel Groove-type. While the laser power is adjusted to 5W, 10W, 15W, and 20W, the Jsc is 18.01mA, 22.51mA, 28.99mA, and 27.10mA, respectively, and the η is 5.96%, 8.976%, 12.30%, and 11.13 %, respectively. The sc-Si wafer laser texture of homogeneous structure to form of Vertical rip-stop type. While the laser power is adjusted to 5W, 10W, 15W, and 20W, the Jsc is 26.24mA, 27.85mA, 27.06mA, and 21.79mA, respectively, and the η is 8.79%, 11.02%, 11.24%, and 10.17%, respectively. When considering the process of laser texturing mc-Si is to be same of the parameters with sc-Si. While laser treated on mc-Si the power is adjusted to 5W, 10W, 15W, and 20W, the Jsc is 26.24mA, 27.85mA, 27.06mA, and 21.79mA, respectively, and the η is 5.96%, 8.976%, 12.30%, and 11.13 %, respectively. The most important of mc-Si is the power density will increase the Jsc and decrease the surface damage. In order to reduce optical losses the front surface of the cell has been textured. Texturization was carried out by means of Nd:YAG laser operating at wavelength of 1064 nm. Laser texturing of silicon wafers allows for decreasing of reflectance compared to reflectance of without textured wafers. Laser texturing makes it possible to increase aspect ratio. In which, high aspect ratio can be increase absorption of the incident solar radiation. The laser texturing approach can be instrumental to achieve high efficiency in mass production using relatively low-cost silicon wafers as starting material with the proper optimization of the fabrication steps.
URI: http://ethesys.lib.ntou.edu.tw/cdrfb3/record/#G0M97530018
http://ntour.ntou.edu.tw/ir/handle/987654321/18836
Appears in Collections:[電機工程學系] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML182View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback