English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2357618      Online Users : 37
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/18510

Title: 以直流磁控濺鍍暨離子源濺鍍系統研製多層彩色濾光片之效能改善分析
The Improvement Study and Fabrication of Multi-layer Color Filters Deposited by a DC Magnetron with Ion Source Sputtering System
Authors: Chih-Chiang Yu
游志強
Contributors: NTOU:Department of Electrical Engineering
國立臺灣海洋大學:電機工程學系
Keywords: 直流磁控濺鍍系統;離子源;氧化鈮;氧化矽;彩色濾光片
DC magnetron sputtering system;Ion source;Nb2O5;SiO2;Color filters
Date: 2005
Issue Date: 2011-07-04
Abstract: 在本論文研究中,吾人利用直流磁控暨離子源濺鍍系統分別鍍製氧化鈮(Nb2O5)及氧化矽(SiO2)薄膜以研發高效能彩色濾光片,相較於傳統磁控濺鍍製程,本研發系統所製鍍之薄膜具有較佳的光學特性;同時本系統具有離子助鍍之效,除使其具緻密平滑之薄膜品質外,亦可縮短薄膜製鍍時間,提昇整體製程效能。 於薄膜製鍍實驗中當改變離子源放電電流(3~6.8mA)時,將使Nb2O5折射(n)上昇(n=2.34~2.36)和吸光係數(k)下降(k=1.6×10-3~4×10-4);在SiO2則為折射率下降(n=1.5~1.49),吸光係數亦下降(k=1.6×10-4~7×10-5),當改變離子源之通氧量(20~60sccm),則使Nb2O5折射率上升(n=2.34~2.37)和吸光係數下降(k=3.5×10-4~2.8×10-4),在SiO2則為折射率下降(n=1.51~1.49),吸光係數亦下降(l=9×10-5~7×10-5)。同時吾人利用修改遮罩(Mask)之方法,改善大面積不均勻之缺點,增加大面積的使用率。吾人就所鍍製之薄膜進行多項環境測試;包括烘烤(0~12小時)、沸水浸泡(0~4小時)及鹽水浸泡(1~3天)。相較於傳統磁控濺鍍系統,本研發系統所鍍製之薄膜在經烘烤後T50(穿透百分比50%)波長無飄移現象,而傳統磁控濺鍍之薄膜T50有明顯之波長飄移(λ=662~638nm),經沸水測試本系統之薄膜亦無膜剝落現象,鹽水浸泡後薄膜吸收亦較小(k值較傳統薄膜小三倍),顯示出因離子助鍍使的薄膜更加耐環境破壞。 最後吾人鍍製多層膜之彩色濾光片,並比較兩系統之差異,吾人首先以TFCalc設計藍色(b)濾光片膜堆[1.05(.5LH.5L)9 1.2(.5LH.5L)9]其中L為四分之一光學厚度之低折射率SiO2,H為四分之一光學厚度之高折射率Nb2O5,並加以最佳化為36層,同理綠色(G)濾光片膜堆[1.27(.5LH.5L)9 0.73(.5LH.5L)9]並加以最佳化為34層;及紅色(R)濾光片膜堆[0.9(.5LH.5L)9 0.7(.5LH.5L)9]並加以最佳化為36層。實驗結果顯示出所製鍍最佳層數之彩色濾光片,本研發系統不但可減少製程時間(約4倍)外,濾光片之平均穿透率亦由(91%。93%)提昇至(95.5%)。此高效能彩色濾光片將對單晶片投影機有所改善。
In this thesis, we deposit niobium oxide (Nb2O5) and silicon oxide (SiO2) films by a DC magnetron with an ion source sputtering system. Compared with the conventional magnetron sputtering system, the reactive gas (O2) is ionized by ion source and then introduced into the chamber in this system. So it can keep the processing pressure at a better level, and get thin films with better optical performance. It can also decrease the time in fabrication. Besides, this system also has the capability of ion-assisted deposition (IAD), causing the thin film more compact and smooth. In this experiment, when we change the discharge current of ion source (3~6.8mA), the refractive index of Nb2O5 increases (n=2.34~2.36) but the extinction coefficient decreases (k=1.6×10-3~4×10-4); the refractive index of SiO2 decreases (n=1.5~1.49) and the extinction coefficient decreases (k=1.6×10-4~7×10-5). While we change the oxygen flow of ion source (20~60sccm), the refractive index of Nb2O5 increases (n=2.34~2.37) but extinction coefficient decreases (k=3.5×10-4~2.8×10-4); the refractive index of SiO2 decreases (n=1.51~1.49) and extinction coefficient decreases (k=9×10-5~7×10-5). Meanwhile, we use mask adjustment to improve the non-uniformity of large substrates, this increasing the utility of large size substrates application. Then we do many environmental tests, such as baking (1~12 hours), soaking in boiling water (1~ 4 hours), and soaking in salt water (1~ 3 days). Compared with the conventional system, thin films which are obtained by this system have no T50 (Transmittance at 50%) shift in wavelength after being baked, but thin films which are obtained by conventional system shift evidently (662~638nm). Besides, there are no peeling phenomenon after the boiling water test, and fewer absorption after being soaked in salt water (k is 3 times smaller than the conventional system). Environmental tests show that ion-assisted process makes thin films more durable. Finally, we compare the difference of the two systems by deposited multi-layer color filters. First, we design coating of blue color filter [1.05(.5LH.5L)9 1.2(.5LH.5L)9] by TFCalc program, then simulating the optimal 36 layers, in which L is a quarter of optical thickness with low refractive index (SiO2), and H is a quarter of optical thickness with high refractive index (Nb2O5). We design coating of green color filter [1.27(.5LH.5L)9 0.73(.5LH.5L)9], then simulating optimal 34 layers; coating of red color filter [0.9(.5LH.5L)9 0.7(.5LH.5L)9], then simulating optimal 36 layers. We practically deposit blue and green filters and make the deposition time of this system decrease about 4 times less than that of the conventional system. Moreover, the transmittance reaches 95.5% and is higher than 91~93%, the transmittance obtained in filters made by conventional system. The high performance color filters can apply in the photoelectric industry such as the color wheel in 1 chip DLP.
URI: http://ethesys.lib.ntou.edu.tw/cdrfb3/record/#G0M93530011
http://ntour.ntou.edu.tw/ir/handle/987654321/18510
Appears in Collections:[電機工程學系] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML136View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback