English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27287/39131
Visitors : 2443796      Online Users : 35
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/18299

Title: 空間群聚技術於漁船監控管理之應用研究
Spatial Cluster Detection for the Fishing Vessel Monitoring Systems
Authors: Ying-Yuan Su
蘇膺元
Contributors: NTOU:Department of Communications Navigation and Control Engineering
國立臺灣海洋大學:通訊與導航工程系
Keywords: 漁船監控系統;群聚演算法;DBSCAN
VMS;Clustering Algorithm;DBSCAN
Date: 2008
Issue Date: 2011-07-04
Abstract: 漁船監控系統(Vessel Monitoring System; VMS)對於船隻的監控、管制與偵察(Monitoring, Control and Surveillance; MCS)是一項很有用的工具,它能夠幫助海岸巡防單位更有效率的執行海岸巡邏工作。當各國、各區域漁業管理組織廣泛應用VMS,有越來越多的研究與應用集中在挖掘VMS的資料庫,以從VMS資料庫中挖掘出更多更有用的資訊,並運用這些資訊增進VMS的效益與實用性,我們稱之為資料探勘。在文中,會特別介紹資料探勘中的群聚技術演算法。 本篇論文最初的目的是為了找出在方圓3海浬範圍內,至少包含3艘船隻的船隻密集區域,為達此目的,我們使用了資料探勘中,以密度為基礎的群聚演算法-DBSCAN(Density Based Spatial Clustering of Applications with Noise) [1]。研究並發展DBSCAN應用於台灣的船隻VMS,以找出船隻的密集區域。論文中,我們探討了DBSCAN群聚分類所需花費的時間成本與分類的準確性,並嘗試使用不同的方法改進DBSCAN群聚分類效能以及解決問題的整體準確性,如估測船隻的即時位置、使用切割資料表或建立鄰近點資料表等。最後,並利用密集區域偵測系統所得的結果,應用於非法運搬船與平行船隻問題的偵測上,並討論判別出運搬船與平行船隻的準確性與實用性。
Fishing Vessel Monitoring System (VMS) is an effective tool of fisheries monitoring, control and surveillance measures to counter over-fishing. It can also help the coast guard to safeguard vessels more efficiently. As VMS is widely implemented, more and more efforts focus on mining the VMS database to discover knowledge and clues that would further enhance the benefits. This thesis is focused on data mining VMS database with clustering technology developed for and implemented into the VMS of Taiwan. The initial request form the Fisheries Administration was to constantly identify wherever there are at least three fishing vessels within 3 nautical miles of range. The proposed solution was based on DBSCAN [1] clustering algorithm. The performances in accuracy and run-time were evaluated and improved with vessel position prediction, partitioning of datasets, data structure and algorithm design. With the promising results, this solution has been recognized by the fisheries management and VMS operation experts to be of many extended use in VMS. Finally, this Density Area Detection System was applied to the detection of at-sea transshipment and parallel-track vessels. Then, the performance in accuracy and practicability would be discussed.
URI: http://ethesys.lib.ntou.edu.tw/cdrfb3/record/#G0M95670042
http://ntour.ntou.edu.tw/ir/handle/987654321/18299
Appears in Collections:[通訊與導航工程學系] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML177View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback