English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27533/39387
Visitors : 2537748      Online Users : 31
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/14400

Title: 平面梁柱桿件之非線性材料的穩定分析
Stability Analysis for Nonlinear Material of Planar Beam-columns
Authors: Qian-Ling Liao
廖倩綾
Contributors: NTOU:Department of Harbor and River Engineering
國立臺灣海洋大學:河海工程學系
Keywords: 矩形斷面;I形斷面;殘餘應力;材料非線性;幾何非線性
Rectangular;I-shaped;residual stress;Material nonlinearity;Geometrical nonlinearity
Date: 2006
Issue Date: 2011-06-30T07:37:02Z
Abstract: 本研究之目的在於探討梁桿件為矩形斷面及I形斷面的非線性行為,其非線性效應包含材料非線性與幾何非線性。內容包含以下六個部分:(1) 以解析的方式推導矩形斷面梁及有殘餘應力效應之I斷面梁,其斷面彎矩-軸力-曲率-軸向應變的關係。(2) 簡化矩形斷面梁之曲率關係式為通式,利用I形斷面梁在各降伏區之極限邊界值修正其曲率近似關係式。將曲率關係式進而積分求得其曲率積分方程式,此關係式因降伏區域不同而有所差異。(3) 將承受外力之簡支梁桿件其控制方程式,利用已知邊界條件及曲率積分方程式,推演出桿件在各降伏區域之非線性積分方程式。(4) 利用非線性數值分析方法,建立桿件外力與變位之間的非線性行為。(5) 利用非線性積分方程式對斷面最大彎矩作一次微分為零的條件,即可求得在挫屈載重下,建立外力與材料幾何參數間之判別式。(6) 經實例分析探討含軸力作用之簡支梁承受端點彎矩的非線性行為。
The purpose of this paper is mainly discussing the non-liner behavior of beam-column which is as rectangular section and I-shaped wide flange. And the non-liner effect includes material and geometry non-linear. It includes six parts: (1) To infer the relation of moment, axial force, curvature and axial strain of the retangular section and I-shaped from exact. (2) To simplify the curvature relations of rectangular section to general formula. And to adjust the curvature relations by using limit point of I-shaped wide flange in each yield zone. To integrate the curvature relations, the formula of the curvature integration is as the result and will be changed if it’s in different yield zone. (3) With governing equation the forced simple supported beam to substitute in the given boundary condition, and the formula of curvature integration, and then to infer the formula of non-liner integration in each yield zone of member. (4) By using the numerical analysis method of nonlinearity, to establish the behavior of non-liner between the force and deflection of member. (5) Using the formula of non-liner integration to differentiate the maximum bending moment be zero, and it comes out the discriminant as the result which is founded between the force and material-geometric parameter under buckling load. (6) With actual examples to analyse and discuss the simple beam-column in non-liner behavior which is with axis force and end moment.
URI: http://ethesys.lib.ntou.edu.tw/cdrfb3/record/#G0M94520009
http://ntour.ntou.edu.tw/ir/handle/987654321/14400
Appears in Collections:[河海工程學系] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML160View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback