English  |  正體中文  |  简体中文  |  Items with full text/Total items : 27248/39091
Visitors : 2416603      Online Users : 49
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/14089

Title: I型鋼構架結構之非線性分析
Non-linear analysis of I-shaped Wide Flange Steel Frame Structures
Authors: Chiu-Yun Wu
吳秋芸
Contributors: NTOU:Department of Harbor and River Engineering
國立臺灣海洋大學:河海工程學系
Keywords: I型斷面;I型鋼構架;非線性;非線性分析
I-shaped;I-shaped wide flange steel frame;Non-linear;Non-linear analysis
Date: 2005
Issue Date: 2011-06-30T07:33:27Z
Abstract:   本研究之目的在於延伸矩型梁鋼斷面平面構架的分析方法,將其應用於分析I型梁鋼斷面進入非線性後的行為。其內容包含六個部分:(1) 以解析的方式推導矩I斷面梁彎矩-軸力-曲率-軸向應變之關係。(2) 由上述關係建立簡支梁柱元素的節點力與節點位移之關係式:首先以解析的方式求得基本單元梁曲率面積,接著利用共軛梁法可得到簡支梁柱元素的節點力與節點位移之關係式。(3) 推導柔度矩陣:除軸向自由度的柔度係數 是由軸向應變對軸向力偏微分導出外,其它柔度係數經由解析方式,以節點力、節點位移、節點曲率或節點軸向應變的簡潔型式表示。(4) 由柔度矩陣經過逆轉換得到切線勁度矩陣,再建立元素勁度矩陣與元素幾何勁度矩陣。(5) 利用基本單元梁,簡化說明上述外力達塑性二區時之塑性行為。(6) 提出一種非線性數值分析方法:推得的節點增量內力與節點增量位移的非線性關係式,建立節點內力增量與節點位移增量近似線性的關係,以預測桿件內力,由此求得平面鋼構架的幾何與材料非線性行為。經實例分析驗證此數值分析方法,並探討平面鋼構架的非線性行為。
  The purpose of this paper in extending the analytical method of the rectangular section of planar steel frames, behavior of applying to non-linear analysis of I-shaped wide flange steel frame structures.And it includes six parts:(1) To infer the relation of moment,axial force,curvature and axial strain of the rectangular section from the exact.(2) From the above point to establish the relation of the end of force of the simple beam-column element and the end of displacement:First, it is needed to acquire the curvature area of the fundamental unit-beam and the shape of centroid by the exact.Then,it can acquire the equation of the end of force of the simple beam-column element and the end of displacement by using the conjugate beam method.(3) Find out the tangent flexibility matrix:In addition to the tangent flexibility coefficient of the axial degrees of freedom is acquired by the axial strain to axial force from the partial,the rest of the tangent flexibility coefficient through exact,and depend on the simplificative way to indicate the end of force,the end of displacement,the end of curvature,or the end of axial strain.(4) Inverse the tangent flexibility matrix to get the tangent stiffness matrix,and to get the geometry stiffness of the element.(5) Using unit-beam, it simplify to explains behavior of plactic of the end of force reach plastic II.(6) To infer numerical analysis methods of non-linear:The acquired non-linear equation of the end of increment of force and the end of increment of displacement to establish the approximate linear relation of the end of increment of force and displacement,which is to predict the external shaft force.And it can acquire the behavior of geometry and material non-linear of planar steel frames from this part.
URI: http://ethesys.lib.ntou.edu.tw/cdrfb3/record/#G0M93520007
http://ntour.ntou.edu.tw/ir/handle/987654321/14089
Appears in Collections:[河海工程學系] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML341View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback