English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2347151      Online Users : 46
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/12733

Title: 離散型非線性隨機系統之模糊協方差控制
Fuzzy Covariance Control for Discrete Nonlinear Stochastic Systems
Authors: 張文哲
Contributors: NTOU:Department of Marine Engineering
國立臺灣海洋大學:輪機工程學系
Keywords: 模糊控制;協方差控制;散型非線性隨機系統
Fuzzy Control;Covariance Control;Discrete Nonlinear Stochastic Systems
Date: 2003-08
Issue Date: 2011-06-29T07:55:40Z
Publisher: 行政院國家科學委員會
Abstract: 摘要:協方差控制技術在線性隨機系統中是一 個很重要的設計方法,再者,近模糊技術 在非線性系統的控制問題中亦扮演著一個極 為重要的角色。結合此二種設計方法,我們在 過 去 進 的 計 畫 中 (NSC91-2213-E-019-003) 發展出一個探討續型船舶動態定位操控系 統控制問題的混合式設計。將此一觀繼 續延伸,本計畫將針對散型非線性隨機系 統,發展一個模糊協方差控制設計的方法, 在本計畫中所考慮的散型非線性隨機系統 包括標定系統與擾動系統,他們將被模組化成 一個 Takagi-Sugeno (T-S) 型式的模糊系統模 型。 本計畫的目的主要在於希望求得模糊協 方差控制器的存在條件與解答。在我們所提出 方法的前半部中,我們指定一個共同態協方 差矩陣去取代 T-S 模糊模型下穩定條件中所 需的共同正定矩陣。受制於這個特別的共同協 方差矩陣,線性的態回授控制增將直接地 由廣義逆矩陣定求出。在本計畫後半部中, 我們將獲得一個在散時間 T-S 模糊模型下 去求解線性回授增的方法,同時使得此方法 滿足系統的特性限制。並且,在此所提出的控 制問題可以被簡化為線性矩陣等式的 問 題。這個方法主要的優點在於我們可以使用簡 單有效的線性控制處散型非線性 隨機系統複雜的控制器設計問題。
Abstract:Covariance control technique is an important design method for the linear stochastic systems. Besides, fuzzy technique has played the significant role of the control problem for the nonlinear systems, recently. Combining these two design methods, we tried to develop a mixed approach to deal with the control problem of continuous dynamic positioning systems for ships (NSC91-2213-E-019-003). Extending this idea, this project developed a fuzzy covariance control design methodology for the discrete nonlinear stochastic systems. The discrete nonlinear stochastic system considered in this project contains nominal and perturbed ones, which are modeled by the Takagi-Sugeno (T-S) type fuzzy models. The purpose of this project is to find the conditions and solutions for the fuzzy covariance controllers. The first half part in the present approach is to assign a common state covariance matrix instead of the common positive definite matrix for the stability conditions of T-S fuzzy systems. In subject to this specified common state covariance matrix, the linear state or output feedback control gains will then be directly solved by the theory of generalized inverse. In the latter half part of this project, we derive a method to solve the linear feedback gains for the discrete T-S fuzzy controllers, which can achieve system performance constraints, simultaneously. Moreover, the presented control design problem can be reduced to Linear Matrix Inequalities (LMI) problems. The advantage of the present approach is that we can use the linear control theory to deal with the complex design problem for the discrete nonlinear stochastic systems.
Relation: NSC92-2213-E019-003
URI: http://ntour.ntou.edu.tw/ir/handle/987654321/12733
Appears in Collections:[輪機工程學系] 研究計畫

Files in This Item:

File Description SizeFormat
index.html0KbHTML99View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback