English  |  正體中文  |  简体中文  |  Items with full text/Total items : 26988/38789
Visitors : 2344501      Online Users : 39
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/11976

Title: 幾何非線性分析的數值方法
Numerical Method of a Geometrically Nonlinear Analysis
Authors: 郭世榮
Contributors: NTOU:Department of Harbor and River Engineering
國立臺灣海洋大學:河海工程學系
Keywords: 幾何非線性;極限點;反跳點;不穩定
Geometrically nonlinear;Limit point;Snap-back point;Unstable
Date: 1992-08
Issue Date: 2011-06-29T01:37:21Z
Publisher: 行政院國家科學委員會
Abstract: 摘要:結構在彈性大變形路徑中,隨外加荷重的改變, 結構物的勁度有硬化和軟化現象,平衡位置則有 穩定和不穩定的區別,外力會有加載及減載過程. 由載重-位移曲線中的極限點和反跳點,可區分上 述各種現象.由上述各種變形路徑的特性可知,完整的結構幾 何非線性分析方法,必須�在達到極限點時,增量 荷載能自動改變方向;�隨結構物勁度的變化,能 自動調整增量荷載的大小;�能穩定的通過反跳 點及極限點的變形路徑.上述問題即為本計劃的 研究重點.
abstract:The basic problem in a geometrically nonlinear analysis is the solution of a set of nonlinear equations for the structure. Depending on the history of loading, the stiffness of the structure may be softening or stiffening, the equilibrium path may be stable or unstable, the equilibrium path may be on a stage of loading or unloading. All such phenomena are typified by the occurrence of critical points such as the limit points and snap-back points in the load-deflection curves. The basic issue in this project is to analyze the geometric phenomena of the equilibrium path in N+1 dimensional space by a path parameter, and to create constraint equation with an incremental path parameter. Besides, based on the analysis results, comments will be given on the characteristics of each nonlinear solution scheme. Further, based on the principle of arc length method, by an exchange unit factor, a consistent unit N+1 dimensional arc length will be found. As to the position of which the equilibrium path pass limit point can be found by the geometric phenomena of an N+1 dimensional space deformation path. In this project, an effective method for solving kinds of deformation paths will be raised by the issued nonlinear solution scheme.
Relation: NSC82-0410-E019-004
URI: http://ntour.ntou.edu.tw/ir/handle/987654321/11976
Appears in Collections:[河海工程學系] 研究計畫

Files in This Item:

There are no files associated with this item.



All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback