English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 643147      Online Users : 47
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/11883

Title: 完備多倒易法對於解音場外域問題的研究
A Study of the Complete MRM on the Exterior Acoustic Problems
Authors: 葉為忠
Contributors: NTOU:Department of Harbor and River Engineering
Keywords: 外域音場問題;完備多倒易法
Exterior acoustic problem;Complete multiple reciprocity method
Exterior acoustic problem;Complete multiple reciprocity method;Semi-infinite domain;Helmholtz equation
Date: 1998-08
Issue Date: 2011-06-29T01:37:00Z
Publisher: 行政院國家科學委員會
Abstract: 摘要:本研究採用完備多倒易法求解半無窮域之一維Helmholtz方程式。為有效解決於傳統多倒易法中失去之求解資訊,本研究提出於零階基本解中加入一適當之複數,俾使由此法推導出之核函數完全等效於由複數架構所推導出之結果。文中並以Dirichlet及Neumann兩種邊界條件為算例,進行本研究所提出方法之理論與數值計算,結果顯示二算例之理論與數值結果相當吻合。
abstract:In this paper, the complete multiple reciprocity method is adopted to solve the 1-D Helmholtz equation for the semi-infinite domain. In order to recover missing information in the conventional multiple reciprocity method, it is proposed to add an appropriate complex number in the zeroth order fundamental solution such that the kernels derived from this proposed method are fully equivalent to those derived from the complex-valued formulation. Two examples with the Dirichelet and Neumann boundary data are given to show the validity of the proposed method analytically and numerically. The numerical results have good agreement with analytical solutions.
Relation: NSC88-2211-E019-009
URI: http://ntour.ntou.edu.tw/ir/handle/987654321/11883
Appears in Collections:[河海工程學系] 研究計畫

Files in This Item:

There are no files associated with this item.

All items in NTOUR are protected by copyright, with all rights reserved.


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback