English  |  正體中文  |  简体中文  |  Items with full text/Total items : 28611/40649
Visitors : 616320      Online Users : 66
RC Version 4.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Adv. Search
LoginUploadHelpAboutAdminister

Please use this identifier to cite or link to this item: http://ntour.ntou.edu.tw:8080/ir/handle/987654321/11245

Title: 具電量考慮之無線傳輸技術於箱網養殖環境監測
Wireless Transmission Technique with Power Considrations for Net Cage Culture Environment Sensing
Authors: 鄭慕德
Contributors: NTOU:Department of Electrical Engineering
國立臺灣海洋大學:電機工程學系
Date: 2008-08
Issue Date: 2011-06-28T08:08:47Z
Abstract: 摘要:子計畫五之目標: 海上箱網養殖的環境可能綿延數公里,而且佈線不易,故本計畫採用無線傳輸技術來輸送箱網上的資訊與岸上監控中心的命令。另外箱網的電源不是使用電池就是靠風力或太陽能,要能長時間正常運作也需要考慮電量的使用。本子計畫之目的在提供總計畫’優化技術於箱網養殖環境監測系統自動化’一個能夠延伸傳輸距離、增加箱網節點數,以及評估傳輸功耗、各節點剩餘電量、與經過節點數來決定路徑之傳輸協定,發展出一具有電源考量之傳輸系統。本子計畫制定之傳輸協定協調多個WiFi無線傳輸裝置與一對大功率長距離WiFi無線傳輸裝置,可服務各箱網與岸上監控中心的各種資料傳輸,建構出一套適用於箱網環境監測之傳輸系統。並利用派屈網路針對各通道間的頻寬、節點經過數、需求電力、與及箱網剩餘電力進行分析與評估,逐步地改進本無線傳輸系統的效能。 子計畫五之工作規劃: 工作項目 第一年:初步建立箱網系統之傳輸平台。 1.建置本計畫之電腦系統、WiFi無線傳輸裝置、與大功率WiFi無線傳輸裝置。 2.針對箱網佈署星狀拓樸架構來設計傳輸機制。 3.實測箱網佈署與傳輸功率對傳輸距離之影響。 4.制定並撰寫總計畫所需之無線傳輸函式庫,降低系統整合的複雜度。 5.實作WiFi星狀拓樸(含大功率WiFi橋接)之無線傳輸系統。 6.配合總計畫進行水槽試驗。 第二年:提高箱網系統佈署面積與運作效能 7. 加入靜態路由功能(資料遞移),並修改第一年完成之傳輸協定,以延伸箱網系統佈署面積。 8. 以派屈網路建立靜態路由網狀拓樸(含電量記錄功能)之無線傳輸系統模型。 9. 運用所建立的派屈網路模型分析無線傳輸系統之運作效能、功耗、及穩定性。 10. 實作WiFi靜態路由網狀拓樸(含大功率WiFi橋接)之無線傳輸系統。 11. 配合總計畫進行碼頭試驗。 第三年:提高箱網佈署之彈性與運作之穩定性 12. 資料遞移方式改用動態路由,並修改第二年完成之傳輸協定,以提高箱網佈署之彈性、穩定性、與及降低整體傳輸功率的消耗。 13. 以派屈網路建立動態路由網狀拓樸(含電量考慮功能)之無線傳輸系統模型。 14. 運用所建立的派屈網路模型分析無線傳輸系統之傳輸效能、功耗、及穩定性,並依據所得數據找出改良方法。 15. 實作WiFi動態路由網狀拓樸與大功率WiFi橋接之無線傳輸系統。 16. 配合總計畫進行海外箱網養殖戶試驗。
Abstract:
Objective: A net cage culture environment can spread over several kilometers of coastline so its wiring is quite difficult. Therefore, we propose the use of wireless transmission techniques to transmit information and commands between net cages and the monitoring center on the shore. In addition, the power of net cages, which use batteries, wind power or solar energy, requires sustaining long-time usage, which demands detecting the remaining power. Our objective is to develop a transmission mechanism that supports extending the transmission distance, increasing the number of net cages, evaluating the transmission power, detecting the remaining power of each cage, and counting the number of visited cages. We aim at developing a transmission system that considers the remaining power. The proposed transmission mechanism can coordinate multiple WiFi devices and a high-power WiFi device to serve various types of data transmission between each cage and the monitoring center on the shore so that a transmission system suitable for net cage environment sensing is developed. Furthermore, we use Petri nets to analyze and evaluate the transmission bandwidth, the number of visited cages, the required power, and the remaining power of the cages so that the efficiency of the proposed transmission system can be improved gradually. Task Plan First year:Initially construct the transmission platform of the net cage system. 1. Install the computer system, WiFi devices and the high-power transmission device. 2. Design the transmission mechanism based on a star topology of the net cages. 3. Measure the influence of the net cage installation and the transmission power over the transmission distance. 4. Specify the functions to be used by all modules. 5. Implement the wireless transmission system with a WiFi star topology including bridging the high-power device. 6. Conduct a water-task experiment with all modules. Second year:Increase the installation area and operation efficiency of the net cage system. 7. Revise the transmission mechanism of the first year to include static routing for expanding the installation area of the net cage system. 8. Use Petri nets to construct the wireless transmission system model with static mesh routing and power consideration. 9. Use the above model to analyze the operation efficiency, power usage, and stability. 10. Implement the wireless transmission system with static mesh routing and bridging with the high-power WiFi device. 11. Conduct an experiment with all modules in a wharf. Third year:Increase the installation flexibility and operation stability of the net cage system. 12. Revise the transmission mechanism of the second year by using dynamic routing of data transmission for raising the installation flexibility and stability of the net cage system and reducing the total transmission power. 13. Use Petri nets to construct the wireless transmission system model with dynamic mesh routing and power consideration. 14. Use the above model to analyze the transmission efficiency, power, and stability for improvement based on the collected data. 15. Implement the wireless transmission system with dynamic mesh routing and bridging with the high-power WiFi device. 16. Conduct an experiment with all modules in a real world net cage environment.
Relation: NSC97-2221-E019-058
URI: http://ntour.ntou.edu.tw/ir/handle/987654321/11245
Appears in Collections:[電機工程學系] 研究計畫

Files in This Item:

File Description SizeFormat
index.html0KbHTML107View/Open


All items in NTOUR are protected by copyright, with all rights reserved.

 


著作權政策宣告: 本網站之內容為國立臺灣海洋大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,請合理使用本網站之內容,以尊重著作權人之權益。
網站維護: 海大圖資處 圖書系統組
DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback